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Working memory (WM) is not a unitary construct. There are distinct processes involved in encoding infor-
mation, maintaining it on-line, and using it to guide responses. The anatomical configurations of these pro-
cesses are more accurately analyzed as functionally connected networks than collections of individual
regions. In the current study we analyzed event-related functional magnetic resonance imaging (fMRI)
data from a Sternberg Item Recognition Paradigm WM task using a multivariate analysis method that allowed
the linking of functional networks to temporally-separated WM epochs. The length of the delay epochs was
varied to optimize isolation of the hemodynamic response (HDR) for each task epoch. All extracted functional
networks displayed statistically significant sensitivity to delay length. Novel information extracted from
these networks that was not apparent in the univariate analysis of these data included involvement of the
hippocampus in encoding/probe, and decreases in BOLD signal in the superior temporal gyrus (STG), along
with default-mode regions, during encoding/delay. The bilateral hippocampal activity during encoding/
delay fits with theoretical models of WM in which memoranda held across the short term are activated
long-term memory representations. The BOLD signal decreases in the STG were unexpected, and may reflect
repetition suppression effects invoked by internal repetition of letter stimuli. Thus, analysis methods focusing
on how network dynamics relate to experimental conditions allowed extraction of novel information not ap-
parent in univariate analyses, and are particularly recommended for WM experiments for which task epochs
cannot be randomized.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Working memory (WM) refers to the ability to actively hold infor-
mation in mind in the service of guiding behavior (Baddeley and
Hitch, 1974). It is not a unitary construct and there are distinct cognitive
processes involved in encoding information, maintaining it on-line, and
selecting a response. Event-related functional MRI (fMRI) investigations
of WM have identified individual brain regions subserving the cognitive
processes engaged by each of these task requirements by manipulating
and contrasting task conditions to isolate activation for each task epoch.
Since cognitive functions depend on coordinated activity in distributed
networks, this approach is inherently limited, in that regions that show
similar significant differences in the magnitude of activation for a
particular contrast need not comprise a functional network. Several
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cognitive processes are involved in each WM task epoch, and each
may rely on distinct networks. The goal of the present study was to em-
ploy a combination of experimental design and analysis methodology
that allows determination of dynamic changes in network involvement
across temporally distinct WM task epochs.

To accomplish this, we reanalyzed the data from a previously pub-
lished rapid-presentation event-related fMRI study (Manoach et al.,
2003). This WM task design had several attributes that facilitated
linking of functional networks to temporally-separated WM epochs.
During all WM experiments, encoding must precede maintenance
over a delay, and the response must follow. Since the order of events
cannot be randomized, the assignment of neural activity to specific
task epochs is challenging. In the current task design, the length of the
delay period was manipulated to facilitate identification of activation af-
filiated with each task epoch, based on the shape of the hemodynamic
response (HDR). For example, networks engaged by processes neces-
sary for maintenance over a delay would be expected to show a more
prolonged HDR with longer delays. Similarly, the HDR of networks in-
volved in only the probe epoch should show a staggered onset time,
depending on the length of the preceding delay period.
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The multivariate analysis technique used to identify brain regions
showing temporally correlated activation (i.e., functional networks)
corresponding to each task epoch was constrained principal compo-
nent analysis for fMRI (fMRI-CPCA). fMRI-CPCA combines multivari-
ate regression and principal component analysis to derive networks
from the portion of variability in the blood-oxygen level dependent
(BOLD) signal that can be explained by the timing of task events.
CPCA differs from other approaches to examining correlations in acti-
vation among regions in that it identifies functional networks that are
based on task-related covariance/correlation in BOLD signal. It also es-
timates the HDR for each network by using a finite impulse response
(FIR) model (Henson et al., 2001; Manoach et al., 2003; Metzak et al.,
2011; Metzak et al., 2012; Rapin et al., 2012), which makes no a priori
assumptions concerning the shape of the HDR, and provides an esti-
mate of the amplitude of the average BOLD response at each time
point, and for each subject separately (Burock and Dale, 2000; Dale
and Buckner, 1997; Glover, 1999; Henson et al, 2001; Serences,
2004). Although innovative experimental design is required for accu-
rately separating and assigning signal to task epochs, optimal analysis
methods complement an informative design by identifying patterns
in the signal that summarize the data and suggest network architec-
ture that subserves cognitive function.

Based on prior findings (Manoach et al,, 2003; Metzak et al,, 2011;
Metzak et al., 2012; Postle, 2006), we expected the encoding and
delay epochs to be associated with networks composed of primary
and association visual cortices, and the probe epoch to be associated
with activation in networks involved in executive control over motor
responses, including the anterior cingulate cortex, primary and pre-
motor cortices, inferior prefrontal cortex, and basal ganglia. We did
not expect unique networks to be involved in the delay epoch, but rath-
er an overlap of delay networks with those associated with encode and
probe epochs, since maintenance of information is required across all
task epochs.

Methods

Details regarding the task design, sample characteristics and data
acquisition have been published previously (Manoach et al., 2003),
and a summary is presented here (see Fig. 1 for a depiction of task
timing). Of the original 12 participants, the data for two were
corrupted and could not be retrieved. The ten remaining participants
were right-handed, healthy, native English speakers (6 female, mean
age 29.67 years, age range 22-46, SD =6.88). Each WM trial began
with a central fixation cross for 500 ms followed by the presentation
of a set of five digits (targets) to be learned (3500 ms; encode epoch).
This was followed by the delay epoch during which time the screen
was blank. During the probe epoch, subjects were presented with a
single digit (probe) for 2000 ms. In half the trials the probe was a tar-
get (a member of the memorized set) and in the other half the probe
was a foil (not a member of the memorized set). Subjects responded
by pressing a button box with their right thumb for targets and their
left thumb for foils. The three trial types differed only in the length of
the delay period that lasted either 0 s (DO0), 2 s (D2), or 4 s (D4). The
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Fig. 1. The timing (in seconds) of the epochs in the three WM trial types (DO, D2, D4).E =
encoding (4 s). P = probe (2 s). D = delay (0,2 or 4 s).

three trial types randomly alternated with a fixation baseline condi-
tion within each run. During the baseline condition, subjects fixated
on an asterisk that appeared in the center of the screen. The duration
of fixation randomly varied in increments of 2 s up to a maximum of
12 s. Subjects performed six runs of 4 min 48 s each. Each run
contained nine trials of each WM condition and 72 s of fixation. The
total experiment time was approximately 35 min.

Constrained principal component analysis for fMRI

The details of fMRI-CPCA analyses using an FIR model are presented
elsewhere (Metzak et al., 2011; Metzak et al., 2012; Woodward et al.,
2006). For the comprehensive CPCA theory and proofs please see previ-
ously published work (Hunter and Takane, 2002; Takane and Hunter,
2001; Takane and Shibayama, 1991). The fMRI-CPCA application is avail-
able on-line, free of charge (www.nitrc.org/projects/fmricpca). Briefly,
after variance in the BOLD signal attributable to the task has been
separated from that not attributable to the task, the dominant patterns
of inter-correlation between voxels over time are used to derive func-
tional networks. The use of an FIR model allows a HDR shape to be
derived for each functional network identified. To confirm the reliability
of the components, for each functional network (component) extracted,
we conducted repeated-measures analyses of variance (ANOVAs),
whereby significant interactions between peristimulus time and the
delay period duration would suggest that the shape of the HDR was af-
fected by variation in delay length. Visual inspection of the HDRs and
post-hoc contrasts of time points across conditions enabled assignment
of each functional network to one or more task epochs.

We now briefly present matrix equations for the current application
of CPCA which required preparation of two matrices. The first matrix, Z,
contained the BOLD time series of each voxel, with one column per
voxel and one row per scan. Each column contained normalized and
smoothed activations over all scans, for each subject separately. The
second matrix, G, contained FIR models of the expected BOLD response
to the timing of stimulus presentations.

Preparation of G

The G (design) matrix consisted of a FIR basis set, which can be used
to estimate the increase in BOLD signal at specific peristimulus scans
relative to all other scans. The value 1 is placed in rows of G for which
BOLD signal amplitude is to be estimated, and the value 0 in all other
rows (“mini boxcar” functions). The time points for which a basis func-
tion was specified in the current study were the 1st to 10th scans fol-
lowing stimulus presentation. Since the repetition time (TR) for these
data was 2 s, this resulted in estimating BOLD signal over a 20 s win-
dow, with the start of the first time point (time =0) corresponding to
encoding stimulus onset. In this analysis we created a G matrix that
would allow us to estimate subject-and-condition specific effects by
inserting a separate FIR basis set for each delay duration condition and
for each individual subject. The columns in this subject-and-condition
based G matrix code 10 peristimulus time points, 3 delay conditions,
and 10 subjects, resulting in 300 columns (10x3x 10=300).

Matrix equations

The matrix of BOLD time series and design matrices are taken as
input, with BOLD in Z being predicted from the FIR model in G. In
order to achieve this, multivariate least-squares linear regression
was carried out, whereby the BOLD time series (Z) was regressed
onto the design matrix (G):

Z=GC+E (1)

where C = (GG)'G'Z, or least squares multivariate multiple regres-
sion. This analysis yielded condition-specific regression weights in the
C matrix (i.e., regression weights specific to the experimental condi-
tions as defined by the design matrix). The condition-specific regression
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weights are often referred to (in conventional fMRI analyses) as beta
images. GC contained variability in Z that was predictable from the de-
sign matrix G, that is to say, variability in Z that was predictable from
the timing of stimulus presentations. For the analysis presented here,
the G matrix was standardized for each subject separately.

The next step employed singular value decomposition to extract
components representing networks of functionally interconnected
voxel activations from GC that were related to the experimental stimu-
lus presentations. This involved singular value decomposition of the ac-
tivation variability that was predictable from the design matrix (GC):

UDV' = GC (2)

where U = matrix of left singular vectors; D = diagonal matrix of sin-
gular values; and V = matrix of right singular vectors. Each column of
VD can be overlaid on a structural brain image to allow visualization
of the neural regions involved in each functional network. In the current
application of CPCA, following dimension reduction, we orthogonally
rotated (Metzak et al,, 2011) and rescaled the VD matrix prior to display,
so that a rotated loading matrix is displayed. The values of the loading
matrix contain the correlations between the components in U and the
variables in GC. An orthonormal rotation transformation matrix is
then used to transform the rescaled left singular vectors U into rotated
component scores (with rows corresponding to scans).

Predictor weights

To interpret the components with respect to the conditions repre-
sented in G, we produced predictor weights (Hunter and Takane, 2002)
in matrix P. These are the weights that would be applied to each column
of the matrix of predictor variables (G) to create U (U = GP) and can be
orthogonally rotated by applying the same transformation matrix
(Metzaket al.,, 2011) as was applied to VD and U. The values in Pindicate
the importance of each column in the G matrix to the network(s) repre-
sented by the component(s), so are essential for relating the resultant
components to the experimental conditions of interest represented in
G. This approach estimates an HDR shape for each individual separately,
so it fully accommodates this heterogeneity.

Statistical tests of component reliability and the delay period manipulation

As is explained above, predictor weights are produced for each com-
bination of peristimulus time point, delay condition, and subject. These
weights can be used to statistically test the effect of peristimulus time,
to determine whether or not these values are reflecting a HDR shape
(and not, for example, simply varying randomly around zero). The
impact of the experimental conditions on the estimated HDR shapes
can also be tested statistically. In the current study, the experimental
condition is the manipulation of the duration of the delay period. This
would be reflected by a significant interaction between peristimulus
time and the delay period duration for the measure of estimated HDR
(i.e., the predictor weights). Omitting the first point of peristimulus
time (which was adjusted to zero for predictor weights in all conditions
for the purposes of display and data analysis), this analysis would be
carried out as a 9x 3 repeated-measures ANOVAs for each component,
with the factors of Time Point (time points 2-10 after the initiation of
a task trial) and Delay (DO, D2, D4) as within-subject factors. Selecting
“repeated” contrasts for the within-subjects factor of Delay and Time
Point allows significance tests to be restricted to adjacent time points
and/or adjacent delay manipulation conditions. This allows the complex
9x 3 interactions between Time Point and Delay to be broken down into
16 different 2x2 interactions involving adjacent levels of the Time
Point and Delay factors. Inspection of the relative size of the p values
for these 16 different 2x2 interactions can pinpoint the time points
that provide main sources of the 9x 3 interactions (e.g., from the 5 to
7 second time points, a significant increase in the DO vs. D2 pairwise
comparison can be observed). Visual inspection of the HDR shapes

while considering the experimental design (delay period manipulation)
facilitates assignment of each network to one or more task epochs. Tests
of sphericity were carried out for all ANOVAs. Greenhouse-Geisser ad-
justed degrees of freedom for violations of sphericity were inspected
but did not affect the results; therefore, the original degrees of freedom
are reported. Since our significance testing is carried out at the level of
subject-specific HDR estimates, the requirement to use bootstrapping
to produce Z-map images is negated. Therefore, point estimates (i.e.,
the orthogonally rotated VD matrix) are overlaid on structural brain im-
ages for depiction of the spatial arrangement of the functional
networks.

Results
Behavior

Repeated measures ANOVAs revealed no significant effect of the
delay length on accuracy, F(2,18) =0.44, p=0.65 (percent correct:
D0=96.8; D2=97.4; D4=96.7) or RT, F(2,18)=1.85, p=0.19
(D0=904 ms; D2=910 ms; D4 =886 ms).

Activations

Inspection of the scree plot indicated that four components should be
extracted for further significance testing. The sum of the squared loadings
divided by the number of scans (analogous to the percentage of GC vari-
ance accounted for by each component) for the rotated solution was 24.8,
16.0, 11.9 and 6.0 for Components 1, 2, 3 and 4, respectively. The neural
regions comprising the functional networks represented by each compo-
nent, mapped onto an MNI structural image, are displayed in Figs. 2A-D
(top panels), with corresponding anatomical descriptions in Tables 1-4.

The mean predictor weights plotted as a function of peristimulus
time, representing the estimated HDR of each functional network,
are listed in Figs. 2A-D (bottom panels). The repeated-measures
ANOVAs of the predictor weights for each component resulted in
highly significant Time Pointx Delay (9x3) interactions, indicating
that the magnitude and/or shape of the HDR was dependent on the
delay period manipulation. The dominant 2 x 2 interactions are listed
below to pinpoint the time points that are the main sources of the
9x 3 interactions.

Anatomical descriptions and relation to experimental conditions

Component 1. Component 1 (9x3 interaction, F(16, 144)=7.25,
p<0.001, 12 =0.45) involved primarily visual cortex regions, includ-
ing primary visual cortex (peaks in Brodmann areas (BAs) 17, 18),
as well as left precentral gyrus and supplementary motor area, right
angular gyrus, and bilateral hippocampi. Visual inspection of the
HDR (Fig. 2A) suggests that activity in this network corresponded
with trial onset, and that the significant interaction reflects a bimodal
peak for the D4 condition, contrasted with a unimodal peak for the DO
condition, with D2 falling in between. When the delay period is ab-
sent (DO), the estimated HDR is sustained relative to the other condi-
tions, peaking at approximately 7-9 s, and reducing to baseline by
15 s. As the delay period increased in D2 and D4, the estimated
HDR became more bimodal, suggesting that this functional network
was responding to the visual demands of the encode and probe
epochs, but not the delay epoch, during which participants viewed a
blank screen. This functional network was labeled Encoding/Probe.

Component 2. Component 2 (9x3 interaction, F(16, 144)=47.54,
p<0.001, n>=0.84) was characterized primarily by activation in
bilateral insula, bilateral thalamus, bilateral cerebellum, bilateral sen-
sorimotor regions, and bilateral dorsal anterior cingulate cortex. Also
present were motor-related regions surrounding the central sulcus
extending into the pre- and postcentral gyri and sulci, and also in
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Table 1

Cluster volumes for most extreme 10% of Component 1 (Encoding/Probe) loadings, with anatomical descriptions, MNI coordinates, and Brodmann area for the peaks within each

cluster. Only clusters >270 mm? are presented here.

Cortical regions Cluster volume Cluster volume

Brodmann area for MNI coordinate (XY Z) Loading value

(mm?) (voxels) peak locations for peak locations
Positive loadings
Cluster 1: bilateral 135,864 5032
Occipital pole 17 15 —93 -3 041
Occipital pole 18 -9 —96 —6 0.41
Inferior lateral occipital cortex 19 -39 —78 —18 0.40
Inferior lateral occipital cortex 19 42 —87 —6 035
Superior lateral occipital cortex 19 —27 —81 24 0.31
Superior lateral occipital cortex 19 33 —78 24 0.29
Cerebellum — Crus I N/A -39 —60 -30 0.26
Lingual gyrus 18 —18 —78 0 0.26
Superior parietal lobule 7 —27 —54 45 0.26
Cerebellum — Crus II N/A 3 —84 —30 0.25
Cluster 2: left hemisphere 6075 225
Precentral gyrus 6 —51 -3 42 0.29
Cluster 3: left hemisphere 4185 155
Supplementary motor area 6 -3 0 63 0.28
Cluster 4: right hemisphere 1782 66
Angular gyrus 7 33 —63 51 0.25
Cluster 5: right hemisphere 1458 54
Hippocampus 27 27 —30 —6 0.26
Cluster 5: left hemisphere 1350 50
Hippocampus 27 —24 —-30 —6 0.25

the cerebellum. Visual inspection of the HDR in Fig. 2B suggests that
the significant interaction was due to the estimated HDR initiating ac-
tivity in a staggered fashion with peaks at approximately 9, 11 and
13 s corresponding to the onset of the probe epoch, indicating a
role for this network in generating a response, but not in encoding
or delay. This functional network was labeled Probe.

Component 3. Component 3 (9x3 interaction, F(16, 144)=5.19,
p<0.001, n>=0.37) included bilateral activation in the occipital
pole, but was dominated by BOLD signal decreases in the superior
temporal gyrus (STG), inferior parietal cortex, posterior cingulate
cortex/precuneus, and several parts of the prefrontal cortex. Visual
inspection of the HDR in Fig. 2C suggests that network intensity
(primarily BOLD signal decreases) began at trial onset (suggesting
that it was involved in encoding). The earlier peak for DO, which
was sharper than that in Encoding/Probe (Fig. 2A), and the absence
of any increase in activity for D4 later than 11 s, suggests that this
component was not involved in the probe epoch, but was involved
in encoding, and to a lesser extent, delay. This functional network
was labeled Encoding/Delay.

Component 4. Component 4 (9x3 interaction, F(16, 144)=9.19,
p<0.001, n*>=0.68) was primarily restricted to the medial occipital
cortices. Visual inspection of the HDR in Fig. 2D suggests that this in-
teraction was due to an earlier decline in the HDR for DO relative to
D2 (13 and 15 second downward peaks), an earlier peak for D2
than D4 (15 and 17 second peaks), as well as staggered onsets corre-
sponding to the delay period manipulations. However, this compo-
nent does not appear to be involved in the probe epoch, because
the peaks are later than the peristimulus time observed for clearly
probe-epoch activity (i.e., those for Component 2). Close inspection
of the previously published univariate results (Manoach et al., 2003,
Figure 3, #14, #15, #16, #17) suggests that for the primary visual cor-
tex, fusiform and lingual gyrus areas, an undershoot of the HDR func-
tion is present at the completion of the WM trial, resulting in a
functional network in the current analysis. Component 4 intensified

at the completion of the trial, and therefore the onsets of the HDRs
are staggered, because increased delay length translates directly
into increased trial length; however, Component 4 is not active dur-
ing the delay period. This functional network was labeled Undershoot.

Dominant 2 x2 interactions

Component 1. The dominant 2 x 2 interactions of adjacent factor levels
(that provide the main source of the 9 x 3 interaction) indicated that
(1) the DO vs. D2 pairwise comparison reversed direction (from
DO0>D2 to DO<D2) over the 7 to 9 second time points (p<.01),
reversed back over the 11 to 13 second time points (p<.005) and
then reduced from a large difference (D2>D0) to no difference
(baseline) over the 15 to 17 second time points (p<.01).

(2) The D2 vs. D4 pairwise comparison (D2>D4) increased magni-
tude over the 9 to 11 second time points (p<.05), changing from
equivalent to large (D4>D2) over the 13 to 15 second time points
(p<.05), and then reducing from large (D4>D2) back to equivalent
(baseline) over the 17 to 19 second time points (p<05).

Component 2. The dominant 2 x 2 interactions of adjacent factor levels
(that provide the main source of the 9x 3 interaction) indicated that
(1) the DO vs. D2 pairwise comparison reversed direction over the 9
to 11 second time points (p<.001), and decreased substantially
(D2>D0) over the 13 to 15 (p<.001) and 15 to 17 (p<.001) second
time points, such that both D2 and DO were equivalent (and at base-
line) by 17 seconds. (2) The D2 vs. D4 pairwise comparison reversed
direction over the 11 to 13 second time points (p<.001), and de-
creased substantially (D2>DO0) over the 15 to 17 second time points
(p<.001), such that both D4 and D2 were equivalent (and at baseline)
by 17 seconds.

Component 3. The dominant 2 x 2 interactions of adjacent factor levels
(that provide the main source of the 9x 3 interaction) indicated that
(1) the DO vs. D2 pairwise comparison increased magnitude
(DO>D2) over the 5 to 7 second time points (p<.05), and reversed
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Table 2

Cluster volumes for most extreme 10% of Component 2 (Probe) loadings, with anatomical descriptions, MNI coordinates, and Brodmann area for the peaks within each cluster. Only

clusters >270 mm? are presented here.

Cortical regions Cluster volume

Cluster volume

Brodmann area for MNI coordinate (XY Z) Loading value

(mm?) (voxels) peak locations for peak locations
Positive loadings
Cluster 1: bilateral 72,414 2682
Supplementary motor area 32 —6 6 48 0.33
Anterior cingulate gyrus 32 6 15 45 0.30
Postcentral gyrus 2 -48 —30 45 0.30
Anterior supramarginal gyrus 40 —42 —39 39 0.29
Superior parietal lobule 2 —42 —39 54 0.28
Central opercular cortex 42 —42 —39 54 0.27
Middle frontal gyrus 6 —27 —6 54 0.27
Cluster 2: right hemisphere 28,836 1068
Precentral gyrus 6 42 —15 54 0.28
Postcentral gyrus 3 45 —24 42 0.27
Middle frontal gyrus 6 30 -3 57 0.26
Parietal operculum cortex 42 57 —21 15 0.22
Cluster 3: left hemisphere 15,498 574
Insula N/A —30 18 -3 0.28
Precentral gyrus 6 —57 9 21 0.25
Central opercular cortex N/A —48 0 3 0.24
Cluster 4: right hemisphere 9575 355
Orbitofrontal cortex 47 33 24 -6 0.27
Frontal operculum cortex 47 45 18 0 0.23
Inferior frontal gyrus (pars opercularis) 45 54 15 0 0.22
Precentral gyrus 6 57 9 15 0.20
Cluster 5: bilateral 7884 292
Cerebellum — Lobule VI N/A —24 —57 —33 0.24
Cerebellum — Vermis VI N/A 3 —72 —24 0.21
Cerebellum — Vermis VI N/A -3 —66 —18 0.21
Cluster 6: right hemisphere 6399 237
Cerebellum — Lobule VI N/A 30 —57 —33 0.26
Cluster 7: right hemisphere 4644 172
Thalamus N/A 12 —18 3 0.25
Cluster 8: left hemisphere 4185 155
Thalamus N/A —12 —18 0 0.25
Cluster 9: left hemisphere 594 22
Middle frontal gyrus 45 —42 33 18 0.21
Cluster 10: left hemisphere 513 19
Inferior lateral occipital cortex 37 —51 —66 —6 0.21
direction over the 7 to 9 second time points (p<.01). (2) The D2 vs. Discussion

D4 pairwise comparison increased magnitude (D2>D4) over the 7
to 9 second time points (p<.01), reducing back to no difference
over the 9 to 11 second time points (p<.05), followed by a reversal
(D4>D2) over the 11 to 13 second time points (p<.10) with this dif-
ference again returning to equivalence (and at baseline) over the 15
to 17 second time points (p<.05).

Component 4. The dominant 2 x 2 interactions of adjacent factor levels
(that provide main source of the 9x 3 interaction) indicated that (1)
the DO vs. D2 pairwise comparison increased substantially (DO<D2)
over the 9 to 11 second time points (p<.01), decreased substantially
over the 11 to 13 second time points (p<.05), reversed over the 13
to 15 second time points (p<.05), and reduced from 17 to 19 second
time points such that both D2 and DO were equivalent (and at base-
line) by 19 s. (2) The D2 vs. D4 pairwise comparison increased sub-
stantially (D2<D4) over the 11 to 13 second time points (p<.05),
decreased substantially over the 13 to 15 second time points
(p<.05), and reversed over the 15 to 17 second time points (p<.01).

In the current study, functional networks involved in the
temporally-separated epochs of a WM task were identified. This ap-
proach complemented and extended the previous univariate analysis
by providing novel insights into the dynamics of network activity across
the temporally separated epochs of WM performance. Functional net-
works were extracted that engaged during encoding, delay, and re-
sponse epochs, and all extracted networks displayed statistically
significant sensitivity to delay length. Novel information extracted
from these networks (that was not apparent in the univariate analysis
of these data) included involvement of the hippocampus in encoding/
probe, and BOLD signal decreases in default-mode regions and the su-
perior temporal gyrus (STG) during encoding/delay. Thus, framing re-
sults in terms of how network dynamics relate to experimental
conditions allowed extraction of novel information not apparent in uni-
variate analyses, including better defined anatomical depictions, effec-
tive temporal separation of WM epochs, and simultaneous relation of
anatomical depictions and WM epochs.
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Table 3

Cluster volumes for most extreme 10% of Component 3 (Encoding/Delay) loadings, with anatomical descriptions, MNI coordinates, and Brodmann area for the peaks within each
cluster. Only clusters >270 mm? are presented here. Positive and negative loadings are presented in the top and bottom sections of the table, respectively.
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Cortical regions

Cluster volume

Cluster volume Brodmann area for

MNI coordinate (XY Z)

Loading value

(mm?) (voxels) peak locations for peak locations
Positive loadings

Cluster 1: left hemisphere 5130 190

Occipital pole 18 —12 —96 —6 0.26
Cerebellum — Crus I N/A —18 —87 —21 0.15
Cluster 2: right hemisphere 5103 189

Occipital pole 18 18 —96 -3 0.24
Cluster 3: left hemisphere

Cerebellum — Crus | 513 19 N/A —-30 —84 —24 0.19

Negative loadings

Cluster 1: left hemisphere 62,181 2303

Parietal opercular cortex 42 —60 —36 21 —0.21
Heschl's gyrus 22 —54 —12 0 —0.20
Postcentral gyrus 2 —63 —24 30 —0.19
Insula N/A -39 —-21 0 —0.19
Angular gyrus 39 —54 —57 33 —-0.19
Planum polare 22 —42 —18 -3 —0.19
Inferior lateral occipital cortex 37 —57 —66 12 —0.19
Planum temporale 22 —60 —30 12 —-0.19
Superior lateral occipital cortex 39 —57 —63 21 —0.19
Supramarginal gyrus 40 —60 —42 33 —0.19
Inferior lateral occipital cortex 37 —45 —63 15 —0.19
Superior parietal lobule 5 —-21 —54 66 —0.18
Superior temporal gyrus 21 —51 -3 —12 —0.17
Precentral gyrus 6 —24 —15 66 —0.17
Central opercular cortex N/A —42 —15 15 —0.16
Middle temporal gyrus 21 —54 -3 —27 —0.15
Cluster 2: right hemisphere 57,240 2120

Planum temporale 22 54 —15 3 —0.22
Supramarginal gyrus 40 66 —24 24 —0.20
Parietal operculum cortex 42 60 —-27 18 —0.20
Superior temporal gyrus 22 57 -9 —6 —0.20
Planum polare 21 51 0 -9 —0.19
Insula N/A 39 24 9 —0.19
Frontal pole 47 45 39 -3 —-0.18
Inferior frontal gyrus (pars triangularis) 45 51 24 9 —0.18
Superior lateral occipital cortex 39 57 —63 27 —0.18
Inferior frontal gyrus (pars opercularis) 45 54 18 6 —-0.18
Angular gyrus 40 63 —51 30 —-0.17
Putamen N/A 30 —15 6 —0.16
Superior parietal lobule 3 27 —42 54 —0.16
Middle frontal gyrus 6 48 6 6 —0.16
Middle temporal gyrus 21 54 —6 —21 —0.15
Cluster 3: bilateral 5292 196

Precuneus 7 -3 —57 48 —0.17
Posterior cingulate cortex 23 -3 —33 42 —0.16
Cluster 4: bilateral 3672 136

Anterior cingulate gyrus 32 -3 36 33 —0.17
Superior frontal gyrus 8 3 30 48 —0.17
Cluster 5: right hemisphere 2484 92

Frontal pole 9 30 42 36 —0.16
Middle frontal gyrus 9 42 18 45 —0.16
Superior frontal gyrus 8 24 24 48 —0.15
Cluster 6: bilateral 1593 59

Anterior cingulate cortex 24 0 21 15 —0.16
Cluster 7: right hemisphere 1593 59

Superior parietal lobule 7 24 —45 69 —-0.17
Superior lateral occipital cortex 5 15 —57 66 —0.16
Precuneus 7 9 —60 57 —0.16
Postcentral gyrus 3 33 —36 66 —0.15
Cluster 8: left hemisphere 999 37

Middle frontal gyrus 9 —42 12 45 —0.16
Superior frontal gyrus 9 —-21 27 42 —0.15
Cluster 9: right hemisphere 837 31

Middle temporal gyrus 37 63 60 -3 —0.17
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Table 3 (continued)

Cortical regions Cluster volume Cluster volume Brodmann area for MNI coordinate (XY Z) Loading value
(mm?) (voxels) peak locations for peak locations

Negative loadings
Cluster 10: left hemisphere 513 19
Superior frontal gyrus 8 —21 21 48 —0.15
Cluster 11: bilateral 378 14
Cuneus 18 -3 —81 33 —0.16
Cluster 12: right hemisphere 378 14
Superior lateral occipital cortex 7 9 —-75 54 —0.16
Cluster 13: left hemisphere 351 13
Middle temporal gyrus 20 —54 —48 -9 —0.17
Cluster 14: right hemisphere 351 13
Frontal pole 11 24 48 —6 —0.16
Cluster 15: bilateral 297 11
Posterior cingulate cortex 23 12 —21 42 —0.15

Table 4

Cluster volumes for most extreme 10% of Component 4 (Undershoot) loadings, with anatomical descriptions, MNI coordinates, and Brodmann area for the peaks within each cluster.
Only clusters >270 mm® are presented here.

Cortical regions Cluster volume Cluster volume Brodmann area for MNI coordinate (X Y Z) for peak Loading value
(voxels) (voxels) peak locations locations
Positive loadings
Cluster 1: bilateral 133,164 4932
Lingual gyrus 18 —12 —78 -9 0.29
Occipital fusiform gyrus 18 21 —78 —12 0.28
Intracalcarine cortex 17 12 —72 9 0.24
Cuneus 18 —6 —87 18 0.23
Occipital pole 17 21 —99 18 0.22
Supracalcarine cortex 18 6 —75 18 0.22
Temporal fusiform cortex 37 —27 -39 —18 0.15
Superior lateral occipital cortex 39 —48 —75 27 0.11
Cluster 2: left hemisphere 5400 200
Precentral gyrus 6 —51 —6 42 0.17
Postcentral gyrus 4 —42 —21 45 0.13
Cluster 3: bilateral 4023 149
Brain stem N/A 6 —27 —12 0.14
Cluster 4: right hemisphere 2133 79
Precentral gyrus 6 54 -3 51 0.14
Cluster 5: bilateral 1512 56
Supplementary motor area 6 —6 0 60 0.14
Anterior cingulate gyrus 6 -9 12 51 0.14
Cluster 6: left hemisphere 891 33
Planum temporale 41 —48 —39 18 0.13
Cluster 7: right hemisphere 486 18
Middle temporal gyrus 20 54 —12 —21 0.13
Negative loadings
Cluster 1: bilateral 1458 54
Posterior cingulate cortex 29 —60 —36 21 —0.14
Cluster 2: right hemisphere 621 23
Caudate N/A 18 -3 21 —0.13
Cluster 3: left hemisphere 405 15

Hippocampus N/A —18 —45 9 —0.14
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According to the univariate results, encoding was expected to be asso-
ciated with visual association and primary visual cortices (Manoach et al.,
2003, Figure 3, #13, #16, #17), and this emerged in the Encoding/Probe
network with the HDR pattern expected for visual activity associated
with encoding and probe (viz., simultaneous initiation of activation, and
gradually bimodal peaks emerging with delay, with full bimodality in
D4; Fig. 2A). Although the univariate results suggested that the response
of visual regions to the probe was not significant, the CPCA results
demonstrated that when the signal common to visual regions is analyzed,
they respond to the probe as well as to the to-be-encoded stimuli (albeit
to a lesser extent). This replicates the results of a previous fMRI-CPCA
analysis on WM data (Metzak et al., 2011) and the involvement of frontal
and parietal regions is consistent with other accounts (Duncan and Owen,
2000). Interestingly, this functional network also involved bilateral
hippocampus, not apparent in the univariate analysis. This fits with
other neuroimaging results, as well as with theoretical models of
WM in which memoranda held across the short term are activated
long-term memory representations (Cowan, 1995; Lewis-Peacock
and Postle, 2008; Oberauer, 2002; Oztekin et al., 2010; Ranganath
et al., 2004). Thus, encoding digit stimuli into WM and recognition/
retrieval-related processes appears to recruit a network involving
the hippocampus, early visual cortex (including areas sensitive to
letter stimuli; Vinckier et al., 2007), and fronto-parietal areas, identi-
fied from a WM meta-analysis as part of a consistently activated set
of regions forming a “core” WM network (Rottschy et al., 2012).

According to the univariate results, we expected that the probe
epoch would be associated with activation in the dorsolateral prefron-
tal cortex (DLPFC), dorsal anterior cingulate cortex, inferior frontal re-
gions, insula and thalamus (Figure 3 #5, #11, #10, #7; Figure 4 #18,
#19 in Manoach et al., 2003, for univariate results). Suggestions for
why DLPFC activation was absent for the delay period in this task
were presented in the discussion section of the original univariate
analysis (Manoach et al., 2003) and are not repeated here. The func-
tional network associated with Probe showed activation in several of
these regions, along with the time course that would be expected for
a network involved in the probe epoch. Possibly because of the focus
on patterns of intercorrelation between regions, the clusters seen in
the CPCA results for these regions (Fig. 2B) appear better defined
than those from the univariate analysis (Manoach et al., 2003, Figure
3), and the estimated HDR is sharper, very clearly demonstrating the
temporally staggered pattern expected as a result of increasing delay
epoch length. This suggests that this network subserves cognitive
processes required during the probe epoch, such as scanning the con-
tents of WM, comparing the probe to items in the memorized set, and
selecting and generating the appropriate response (Bledowski et al.,
2012; Kahana and Sekuler, 2002; Sternberg, 1966). DLPFC involve-
ment in the probe was expected due to the univariate results, but
these involved small clusters (Figure 3, #1 and #5). Correspondingly,
although not displayed in Table 2 and Fig. 2B, the DLPFC was involved
in the Probe component, but these clusters were not greater than
270 mm® displayed in Fig. 2B (left side cluster peak MNI XYZ: — 35,
55, 16; BA 46; loading =0.19; right cluster peak MNI XYZ: 35, 45,
22; BA 46; loading =0.17). The left inferior frontal cluster is consistent
with previous findings for this task epoch (Buchsbaum et al., 2005a;
Derrfuss et al., 2004; Oztekin et al., 2009). The IFG cluster also includes
Broca's area, a well-known locus for speech production and therefore
some of the areas comprising this network fit with an emergent prop-
erty model of WM (Postle, 2006) in which regions representing infor-
mation under non-sensory conditions also could maintain the same
information across delay periods for subsequent retrieval. In addition
to Broca's area, anterior insula, supplementary motor area, basal
ganglia, and postcentral and superior temporal gyri have all been im-
plicated in the motor control of speech (e.g., Price et al., 2011; Riecker
et al., 2005). Indeed, involvement of language-related areas in WM
was recently demonstrated directly with transcranial magnetic stimu-
lation (Acheson et al., 2011) and in a patient lesion study (Koenigs et

al., 2011). We therefore suggest that this network might invoke
speech production-related processes during the probe phase of the
task.

Because this Probe network is separate from Encoding/Probe, it might
be that several parallel processes are engaged for recognition of the
probe, such as context reinstatement (indexed by Encoding/Probe) and
the aforementioned speech production processes (indexed by Probe)
although the precise nature of such processes and any possible interac-
tion between them, is not clear from the current study. What is interest-
ing, however, is that many of the regions that were involved in probe
only, or encoding and probe (Figs. 2A and B) in the current multivariate
analysis, were instead attributed to combinations of encoding/probe
and the delay epoch in the univariate analysis. Examples of such areas
are visual association areas, primary sensory cortex, and left primary
motor and premotor and supplementary motor regions (Manoach et
al., 2003, Figure 3, #9, #8, #2, #12). Univariate estimates of HDR shapes
are based on beta weights, which reflect combinations of all underlying
functional networks, whereas component loadings and predictor
weights allow these networks to be studied separately. As such, in the
univariate results, this averaging apparently caused activity to be attrib-
uted to the delay epoch.

A small cluster of visual cortex that exhibited HDR shapes sensitive to
increasing delay length, thus suggesting a role in the delay period, was
detectable in the original univariate analysis (Manoach et al., 2003, Figure
3, #16, #17). However, what was not recognized was that these regions
form a functional network with BOLD signal decreases of several regions
including default mode network regions and the STG (Fig. 2C). The nega-
tive loadings of this component translate in a direct sense to a decrease in
BOLD signal (reflected by increasing predictor weights) in response to
task demands (relative to task-off periods), and a negative loading is
not interpreted differently from a positive loading with respect to how
salient this network is at a given point in time. The increase in early visual
cortex activity found in the univariate analysis can be attributed to the vi-
sual presentation of the digit stimuli during the encoding phase, but the
widespread decrease in BOLD signal in frontal, parietal and perisylvian re-
gions that was not detected in the univariate analysis points to a more
complex mechanism underlying the encoding and retention of the stim-
uli than what is suggested by increased activations only.

BOLD signal decreases in the STG during a visual task have been
reported as reciprocal activity between primary sensory regions
(Hairston et al., 2008; Johnson and Zatorre, 2006; Laurienti et al.,
2002; Shulman et al., 1997; Zatorre, 2007), but such an account would
predict that BOLD signal decreases in the STG should be sorted into
the Encode/Probe functional network, not the Encode/Delay network.
Perhaps a more plausible explanation lies in the fact that parts of the
STG reduce activity during inner speech (Buchsbaum et al., 2005b;
Frith et al., 1991), and BOLD signal decreases in the more anterior STG
cluster have been reported when repetition of letter stimuli in a WM
task produced repetition suppression effects in this area (Buchsbaum
and D'Esposito, 2009). One possibility therefore is that this same repeti-
tion suppression effect was produced by the current task as the memo-
rized digits cycled through an internal subvocal rehearsal loop. It is also
possible that the memory signal might be indexed by activity decreases
rather than increases. Indeed, recent work by Lewis-Peacock and Postle
(2012) showed that successful recall could occur for stimuli that had
displayed delay period activity indistinguishable by a multivariate pat-
tern classifier from a non-memory baseline. We also note here that
this specific BOLD signal decrease in the STG replicates previous find-
ings from our group, using similar functional connectivity analysis
methodology, but with different Sternberg tasks, different scanners,
and different samples (including schizophrenia) (Metzak et al,, 2011,
Table 1 clusters 1 and 2, BAs 20, 21, 41/42; Metzak et al., 2012,
Table 3, clusters 6 and 7 negative loadings, BAs 20, 21).

BOLD signal decreases were also observed in the inferior parietal
cortex, posterior cingulate cortex/precuneus, medial prefrontal cortex,
and in regions that form part of the task-negative/default-mode
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network (Fox et al., 2005; Raichle et al., 2001). Although it is tempting
to explain this as a release of default-mode/task-off activity correspond-
ing to trial onset, this does not accord with the lengthening of the
“deactivation” peaks with increase in the length of the delay epoch.
More puzzling, however, are the BOLD signal decreases in several re-
gions of the prefrontal cortex, specifically in the superior and middle
frontal gyri, a result that is not well supported by previous findings in
which activity usually increases in these areas, particularly during
encoding. It remains to be tested more directly whether BOLD signal de-
creases in these regions reflect an actual contribution to encoding and
delay-related processes in WM, or whether they are better explained
by the ceiling level of task performance, for example. On the whole,
however, it does appear that BOLD signal decreases during these task
periods are composed of a combination of task-negative and auditory/
language-related regions, in addition to the prefrontal regions.

The pattern reflected by Undershoot (viz, staggered initiation of acti-
vation, very late peaks that do not vary sustained length with delay) ap-
pears novel at first glance. However, a close inspection of the univariate
results demonstrates evidence for the origin of this component. Specif-
ically, in the original analysis we see that for the primary visual cortex,
fusiform and lingual gyrus areas, there is an undershoot of the HDR
function that is not present in other areas (Manoach et al., 2003, Figure
3, #14, #15, #16, #17). This was not focused on the univariate results,
and correspondingly, Undershoot explains a small amount of variance
relative to the other components.

A limitation of this analysis methodology is that the fMRI-CPCA ap-
proach estimates an HDR shape for each individual separately, so all het-
erogeneity between subjects is absorbed in the predictor weights. It
derives spatial depictions of the networks in terms of what is common
to all subjects; therefore, systematic individual differences in spatial rep-
resentation of the components would be depicted as lower estimated
HDRs in the predictor weights only. As is clear from Fig. 2, the standard
errors associated with the functional networks (on the predictor
weights) are small, indicating that the spatial representations were
quite reliable over subjects for this study, but care should be taken, for ex-
ample, when comparing clinical groups that may possess different net-
work configurations.

This set of results suggests that framing results in terms of how net-
work dynamics relate to experimental conditions allows extraction of
novel information not apparent in univariate analyses, including better
defined anatomical depictions, effective temporal separation of WM
epochs, and simultaneous relation of anatomical depictions. The involve-
ment of the hippocampus in encoding/probe, and BOLD signal decreases
in default-mode regions and the STG during encoding/delay were effects
not previously detectable using univariate analysis methods. This empha-
sizes the power of multivariate methodology when attempting to deter-
mine the sensitivity of functional networks to experimental conditions
and task epochs.
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