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Subject-Specific Sparse Dictionary Learning
for Atlas-Based Brain MRI Segmentation

Snehashis Roy, Qing He, Elizabeth Sweeney, Aaron Carass, Daniel S. Reich, Jerry L. Prince, and Dzung L. Pham

Abstract—Quantitative measurements from segmentations of
human brain magnetic resonance (MR) images provide impor-
tant biomarkers for normal aging and disease progression. In this
paper, we propose a patch-based tissue classification method from
MR images that uses a sparse dictionary learning approach and
atlas priors. Training data for the method consists of an atlas MR
image, prior information maps depicting where different tissues
are expected to be located, and a hard segmentation. Unlike most
atlas-based classification methods that require deformable regis-
tration of the atlas priors to the subject, only affine registration is
required between the subject and training atlas. A subject-specific
patch dictionary is created by learning relevant patches from the
atlas. Then the subject patches are modeled as sparse combina-
tions of learned atlas patches leading to tissue memberships at
each voxel. The combination of prior information in an example-
based framework enables us to distinguish tissues having similar
intensities but different spatial locations. We demonstrate the effi-
cacy of the approach on the application of whole-brain tissue seg-
mentation in subjects with healthy anatomy and normal pressure
hydrocephalus, as well as lesion segmentation in multiple sclerosis
patients. For each application, quantitative comparisons are made
against publicly available state-of-the art approaches.

Index Terms—Brain, dictionary, histogram matching, magnetic
resonance imaging (MRI), patches, segmentation, sparsity.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is a widely used
noninvasive modality to image the human brain. Post-

processing of MR images can provide information for under-
standing normal aging, as well as for monitoring and predict-
ing many diseases. For example, quantitative measurements of
brain tissues, such as gray matter (GM), white matter (WM),
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or the ventricles are important biomarkers in aging, dementia,
hypertension [1], while WM lesions and GM volumes are asso-
ciated with the progression of Alzheimer’s disease and multiple
sclerosis (MS) [2]. Therefore, segmentation of multiple tissues
as well as lesions from MR images is important in research
and potentially clinical settings. Beyond volumetric analysis,
segmentation is also a fundamental step in many other image
analysis procedures, such as voxel-based morphometry, cortical
surface reconstruction, and disease classification.

In this paper, we describe a novel framework for dictionary-
based multiclass segmentation of MR brain images. We call this
method subject-specific sparse dictionary learning, or S3DL.
This framework can be employed for a variety of binary or mul-
tilabel segmentation tasks. Here, we demonstrate its use for T2
lesion segmentation in MS patients, as well as brain tissue seg-
mentation on healthy subjects and patients. Although measure-
ments computed from these segmentations may have relevance
in clinical research, we focus primarily on describing the math-
ematical framework from which the results are computed and
evaluating its efficacy compared to similar algorithms.

Previous work on brain image segmentation has employed
a variety of models to capture the intensity distributions of
different anatomical structures. Finite mixture models are the
basis of many image segmentation algorithms, where the inten-
sity histogram is fitted with a number of distributions, such as
Gaussian, (SPM [3], FSL [4], EMS [5], or LoAd [6]), or Rician
[7]. Other algorithms model the tissue intensities using fuzzy C-
means (FCM), such as FANTASM [8], [9] or TOADS [10], [11].
Methods such as FreeSurfer [12] incorporate prior information
on the spatial locations of the tissue with statistical priors that
capture their spatial variability.

Instead of trying to fit image intensities in individual voxels
into predefined parametric models, example based approaches
rely on exploiting similar looking patches from expert seg-
mented images within training data. A patch is defined as a
3-D subimage centered around a voxel. Consisting of 3 × 3 × 3
or larger voxel neighborhoods, the use of patches allows mod-
eling of local textural features. The combined use of training
data and patch features generally provides superior results to
the aforementioned models based on the intensity distributions
of single voxels. The main idea of many example-based MR
segmentation methods is patch-based label fusion [13], where
the training data takes the form of an atlas consisting of MR im-
ages and their manual segmentation. It is implicitly assumed that
a subject patch can be represented by a linear combination of
many atlas patches found in a search window around that patch
[14]–[17]. A patch from a subject MR image is first matched
to similar looking relevant patches (or “examples”) from the
atlas MR image by either nonlocal means [18] or sparse convex
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combination [19], [20] via a patch dictionary [21]. Then corre-
sponding label patches from the atlas segmentation image are
combined similarly to estimate the label of the subject patch.
The atlas is usually registered to the subject to facilitate the
windowed search for relevant patches [22]. Such example-based
patch matching algorithms have been extensively applied in bi-
nary segmentation of the hippocampus [22], amygdala [23],
and ventricles [24] from T1-weighted (T1-w) brain MR images.
Although three-class tissue segmentation methods have been
proposed [19], [25] to segment cerebro-spinal fluid (CSF), GM
and WM from T1-w images, they do not distinguish between
cortical and subcortical structures. A label-consistent multiclass
dictionary-based segmentation method has also been proposed
[26] for subcortical GM segmentation. As cortical and subcorti-
cal structures in the brain have similar intensity values in a T1-w
image, additional information is required to distinguish them.

Our S3DL framework is an example-based approach, using
patches as features and utilizing training data in the form of
an MR image with a known segmentation. It generalizes the
approach proposed by [21] in that it employs dictionary learn-
ing to reduce the atlas size by selecting only the most relevant
patches, leading to improved computational efficiency and ac-
curacy. Unlike [21], S3DL can simultaneously segment multiple
tissue classes while being informed by atlas priors. These priors
inform the algorithm of where different anatomical structures
are likely to occur within the image space. From the training
data, a subject-specific dictionary is learnt using subject image
features, so that it can represent the training subject patches
optimally. Then for each subject patch, its weight is computed
from the learnt dictionary using a sparse optimization procedure.
Corresponding atlas hard segmentation labels are weighted to
generate a tissue membership of the subject patch. In this way,
we can perform binary or whole brain multiclass segmentation
using the same framework. Our approach is, therefore, capable
of segmenting structures with anatomically separate structures
with similar intensities, such as cortical and subcortical GM.

Deformable registration-based label fusion techniques [27],
[28] are often used to segment multiple tissue classes. These
methods employ multiple atlases with labels that are first reg-
istered nonlinearly to a subject. The atlas label maps are then
also transformed into the subject space and combined either by
majority voting [29], probabilistic measures [30], [31], or lo-
cal similarity criteria [32]. The performance of these methods
typically depends on the accuracy of registrations between the
subject and atlases. In addition, large numbers of atlases are
often required, which increases the computational burden.

An advantage of our approach is that deformable registration
between the subject and atlas is not needed, thereby avoiding the
registration-related issues of computational expense and inaccu-
rate correspondences that occur when the discrepancies between
the atlas and the target are large. Subject priors are adaptively
modified so as to account for the wide variability in the tissue
shapes. A preliminary version of this paper has been reported
earlier [33]. The following provides additional details of the al-
gorithm and new results compared to our previous conference
article.

II. METHOD

This section is organized as follows. First, we define notation
and describe in Section II-A how our approach utilizes an at-
las consisting of the original MR image, its segmentation, and
spatial priors for each tissue component. Then in Section II-B,
we show how the atlas and subject images are used within a
sparse patch matching framework to segment a subject image.
Dictionary learning is used to reduce redundancy in the atlas
and extract important patch features. In Section II-C, we show
how the priors are iteratively updated to increase their relevance
with respect to the subject data. Finally, we describe the dataset
in Section II-D.

A. Training data

Our algorithm minimally requires one set of MR images
with a known segmentation to serve as training data. We call
this training data an atlas. Formally, an atlas can be defined
as a (m + 1)-tuple of images, {a1 , . . . , am+1}, where a1 to
am denotes m-channel input MR images, such as T1-w, T2-w,
or FLAIR. The image am+1 denotes the hard segmentation
with n multiple labels. For binary segmentations (e.g., lesion
segmentation), n = 1. When n > 1 and the desired labels have
overlapping intensity distributions, prior information is desir-
able to differentiate structures based on their spatial location.
In such cases, the atlas is augmented to include n priors,
{am+1 , . . .,am+n}, depicting the probability that each label
could occur at each voxel location. In that case, an+m+1 denotes
the hard segmentation. These priors can be computed using a
variety of approaches but practically, a simple blurring of the
known atlas segmentation suffices [10]. An example of a single
channel (m = 1) T1-w atlas image a1 , tissue priors, and hard
segmentation an+m+1 are shown in Fig. 1. Additional priors for
subcortical GM and WM would typically be available but are
not shown in this figure. Although the notations and equations
can be generalized for any m, we will assume single channel
input (m = 1) for the rest of this section to keep the notations
succinct. However, in Section III-B, we use four channels, T1 ,
T2 , PD, and FLAIR, i.e., m = 4.

Given a subject MR image to be segmented, denoted by s1 ,
we must transform the atlas with respect to its geometric space
and intensity scale to align it with the subject. Atlas a1 is affinely
registered to s1 , and the priors {a2 , . . . , an+1} are transformed
to the subject space by the same affine transformation [34].
Note that only a rough initial alignment is necessary because
of the prior adaptation performed by S3DL, as described in
Section II-C. The transformed priors are then multiplied by a
scalar w to control their influence on the final segmentation
and are denoted by {s2 , . . . , sn+1}. MR images a1 and s1 are
also intensity normalized so that the modes of their WM in-
tensities are unity. The WM intensity modes were found au-
tomatically based on a smooth kernel density estimator of the
histograms [35].

For every image, 3-D patches are transformed into 1-D vec-
tors where d denotes the dimension of each patch from an im-
age. For example, for 3 × 3 × 3 patches, d = 27. A subject
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Fig. 1. (a) Atlas image, and its (b) sulcal CSF, (c) ventricle, (d) cortical GM priors, and (e) the hard segmentation.

patch-based feature is denoted by b(j) ∈ R(n+1)d , j =
1, . . . , N , which is the concatenation of subject MR and prior
image (i.e., s1 , . . . , sn+1) patches. Similarly, an atlas patch
feature is the concatenation of patches from atlas MR and
priors (a1 , . . . , an+1). An atlas patch collection is defined as
A1 ∈ R(n+1)d×M , where the ith column of A1 is an atlas fea-
ture. M and N denote the total number of atlas and subject
patches. From now on, we also refer to the (n + 1)d × 1 fea-
ture vector as a “patch.” All features are normalized so that
their �2 norms are unity [19]. The atlas segmentation image is
also decomposed into patches, which form the columns of the
segmentation patch collection A2 .

B. Sparse Dictionary Learning

The atlas data are used in a machine learning framework to
segment the subject image by matching patch-based features
between the subject images and the atlas images. Because the
atlas has a known anatomy, features in the atlas that are similar
to a subject feature contribute information about the anatomy of
the subject. We assume that for every subject patch b(j), a small
number of similar looking patches can always be found from
the collection of atlas patches A1 [19], [20]. Sparse matching
enforces the condition that every subject patch can be matched
to only a few atlas patches, written as

b(j) ≈ A1x(j), for some x(j) ∈ RM

||x(j)||0 � M ∀ j and x(j) ≥ 0 (1)

where x(j) contains weights for each atlas patch in the collec-
tion. The weights are large where the corresponding atlas patch
is similar to the subject patch. Previous methods have enforced
the similarity in spatial locations by searching for the similar
patches in a small window around the jth voxel [22]. We obvi-
ate the need for such windowed searching by including priors
in the features. The nonnegativity constraints in the weight x(j)
enforces the similarity in texture between the subject patch and
the chosen atlas patches.

The combinatorics of the �0 problem in (1) makes it infeasible
to solve directly, but it can be transformed into an �1 minimiza-
tion problem

x̂(j) = arg min
x≥0

{

||b(j) − A1x(j)||22 + λ||x(j)||1
}

subject to ||f(i)||22 = 1 (2)

f(i), i = 1 . . . ,M are the columns of A1 . However, x(j) is a
M × 1 vector, where M is the number of atlas patches, typically
M ∼ 107 . Thus, solving such a large optimization for ev-
ery subject patch is computationally intensive. We use sparse
dictionary learning to estimate a dictionary of smaller length
D1 ∈ R(n+1)d×L , L � M , from A1 , which can be used instead
of A1 in (2) to solve for x(j).

The advantage of learning a dictionary is twofold. First, since
the dictionary can represent a set of training patches optimally
[36], it can, therefore, produce a lower reconstruction error than
other approaches and achieve higher accuracy. This was shown
in [21] where dictionary learning methods exhibited superior
performance over nonlocal-means-based approaches. Second,
the computational burden of (2) for every subject patch is re-
duced because of the obvious reduction in data size.

The dictionary learning approach we use is an alternating
minimization algorithm [37] that solves the following problem:

{x̂(j), ̂D1}

= arg min
x≥0,D1

N
∑

j=1

{

||b(j) − D1x(j)||22 + λ||x(j)||1
}

s.t. ||f(i)||22 = 1 (3)

where f(i), i = 1 . . . , L now are the columns of D1 .
Equation (3) can be solved in two alternating steps. First, keep-
ing D1 fixed, we solve for x(j) for each j, as in (2). Then
keeping x(j) fixed, we solve

̂D1 = arg min
D1

N
∑

j=1

||b(j) − D1x(j)||22 . (4)

A gradient descent approach leads to the following update:

D
(t+1)
1 = D

(t)
1 + η

N
∑

j=1

(b(j) − D
(t)
1 x(j))x(j)T (5)

where η is the step size and t denotes iteration numbers. We
note that η should be chosen carefully so that D(t)

1 > 0, since the

columns of D1 contain MR intensities and priors. D(0)
1 is gener-

ated using L randomly chosen columns of A1 . The segmentation
dictionary D2 is generated using the corresponding columns of
A2 . Convergence is achieved when ||D(t+1)

1 − D
(t)
1 ||22 < 0.01.

An example of a learnt dictionary is shown in Fig. 2, where D
(0)
1
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Fig. 2. Left image shows middle sections of 100 randomly chosen 3 × 3 × 3 patches from D
(0)
1 , while on the right are the same atlas patches learnt from the

subject after five iterations of (5).

is compared with D
(5)
1 . Clearly, after learning from the subject

patches, there are more edges in D
(5)
1 patches, compared to the

“flat”-looking patches in D
(0)
1 .

Once the dictionary has been learned, (2) is solved for every
subject patch b(j) substituting ̂D1 instead of A1 to solve for the
atlas weights x(j). Because every atom in the learnt dictionary
D1 has a corresponding segmentation patch in D2 that corre-
spond to labels, these can be used to define a label for the subject
patch. Empirically, we have found that the mean of ||x(j)||1 is
close to unity and variance is usually very small (∼ 0.005).
Therefore, we can weight the segmentation labels according to
their atlas weights in x(j) to generate tissue memberships

pk (j) = (1D2 (k))
x(j)

||x(j)||1
, k = 2, . . . , n (6)

where 1D2 (k) denotes the indicator matrix having the same size
as D2 , whose elements are 1 if the corresponding element in D2
is k, 0 otherwise. The index k = 2, . . . , n + 1 denotes n unique
tissue labels. Note that we only take the central voxel of pk (j)
to generate the full membership image pk .

C. Adaptive Priors

The previously described steps produce a segmentation that
is influenced by the geometry of the spatial priors. However,
because the priors are derived from a different brain image,
it may not be ideally suited to the subject image because of
pathology or simply the variability of the brain geometry. Thus,
instead of using a fixed prior based on the initial atlas-to-subject
registration, we dynamically update within an iterative loop.
The priors {s2 , . . . , sn+1} at each iteration are replaced by a
Gaussian blurred version of the obtained memberships pk , sim-
ilar to the approach of Shiee et al. [38]. The blurring relaxes
the localization of the tissues in the memberships, allowing for
greater freedom in the segmentation computed at the next step.
The algorithm can be written as follows:

1) At t = 0, we start with {a1 , . . ., an+1 , s1 , s
(0)
2 , . . . , s

(0)
n+1},

where s
(0)
k are the registered atlas priors, k=2, . . . , n + 1.

2) Generate dictionaries ̂D1 and D2 from (5) using {a1 , . . .,
an+1 , s1 , s

(0)
2 . . . , s

(0)
n+1}. The subject patches are denoted

by b(0)(j).
3) At t ← t + 1, for each subject patch b(t)(j), generate the

sparse coefficient x(t)(j) using ̂D1 from (2).
4) Generate memberships {p(t)

2 , . . . , p
(t)
n+1} using x(t)(j)s

from (6).
5) Generate new adaptive priors s

(t)
k ← Gσ � p

(t)
k , k =

2, . . . , n + 1. σ = 3 mm is chosen empirically.
6) Generate b(t+1)(j) using the updated priors {s1 , s

(t)
2 , . . .,

s
(t)
n+1}.

7) Stop if 1
N

∑N
j=1 ||x(t)(j) − x(t−1)(j)|| < ε, else go to

step 3.
Fig. 3 shows the effect of iteratively updating the priors via

memberships. Since the atlas is registered to the subject using
affine registration, the strong GM prior in the middle of CSF (red
boxes) introduces nonzero GM membership. However, because
the prior is updated at each iteration, the effect of that misalign-
ment is mitigated and the CSF memberships are increased in
those areas.

D. Evaluation

To evaluate and optimize the dictionary size selection, we
employed simulated images from Brainweb [39]. Brainweb al-
lows simulation of MR brain images with a known underlying
anatomy. It further allows adjustment of the amount of noise,
providing an excellent testbed for image segmentation algo-
rithms.

We describe three applications of the method. First, to demon-
strate the efficacy of only the patch-based dictionary learning
approach without priors, we applied the algorithm to the seg-
mentation of lesions from a pool of 122 subjects (57 male)
with MS. The average age of the participants was 44 years
(range 22–67), with an average disease duration nine years
(range 0–38). Median expanded disability status scale across
the patients was 3 (range 0–40). Subjects had T1-w MPRAGE
(0.82 × 0.82 × 1.1 mm3), T2-w, PD-w, and FLAIR scans
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Fig. 3. (a) MR image of a subject, (b) and (c) sulcal CSF and (d) and (e) ventricle memberships (pk ) for the first and fifth iterations of the algorithm (see
Section II-C). Red boxes indicate where the CSF memberships change while updating the adaptive priors.

(0.82 × 0.82 × 2.2 mm3) acquired on a 3T Philips scanner
(TR/TE=10.21/6 ms, flip angle 8◦), along with a manual de-
lineation of lesions by an expert rater. We compare our method
against two model-based lesion segmentation methods, Lesion-
TOADS [11] (http://www.nitrc.org/projects/toads-cruise) and
OASIS [40]. LesionTOADS is an FCM-based lesion segmenta-
tion method improving upon [10], where the lesions are modeled
as outliers of the intensity distribution. OASIS uses a logistic re-
gression model incorporating MR image intensities to produce
a voxelwise membership for lesions.

Two datasets were used to validate the application of S3DL
to multiclass brain segmentation. For these two datasets, the fol-
lowing tissue classes were assumed: GM, WM, subcortical GM,
and ventricles. We tested the algorithm on 18 (14 male) pub-
licly available IBSR (http://www.nitrc.org/projects/ibsr) sub-
jects with normal anatomy, acquired with a T1-w sequence.
Image resolution varied between 0.9375 × 0.9375 × 1.5 mm3,
1 × 1 × 1.5 mm3, and 0.837 × 0.837 × 1.5 mm3. Mean age is
38 years (range 7–71). Manual segmentations of 43 structures
are available for each subject. For the purpose of this study,
we combined the labels into four classes, GM, WM, ventricles,
and subcortical GM. Since sulcal CSF is usually underrepre-
sented in the manual segmentations, it is not considered, as was
done in [41]. We compared our method with two state-of-the-art
model-based whole-brain segmentation methods, LoAd [6], and
TOADS [10], and a nonlocal patch-based label fusion method
(http://volbrain.upv.es/) [24]. TOADS uses statistical atlases in
an FCM [42] framework, while LoAd uses Gaussian mixture
models [5] with a refinement for better segmentation of con-
voluted cortical folds. The nonlocal-means-based method [24]
finds relevant patches in a neighborhood, and combines the la-
bels using weights based on a similarity criteria. Additional
comparisons to FreeSurfer [12] are made in a prior conference
publication [33].

In order to test the prior adaptation, we experimented on
ten subjects with normal pressure hydrocephalus (NPH) (not
publicly available), acquired with a structural T1-w MPRAGE
sequence at 0.42 × 0.42 × 0.9 mm3 resolution in a Siemens 3T
scanner, (TR/TI/TE = 2110/1100/3.24 ms, flip angle 8◦). Many
of these subjects exhibit substantial ventriculomegaly, which can
be challenging to segment for atlas-based approaches. The ven-
tricle segmentation on patients showed the effects of adaptive

priors when there is significant atrophy in the ventricles com-
pared to a healthy subject. Manual delineations from an expert
rater were available on only the ventricles, since ventricle vol-
ume is one of the important biomarkers for the disease. We
show that when the anatomy between the atlas and the subject
is significantly different (i.e., enlarged ventricles), our method
is still capable of obtaining accurate ventricular segmentations.

For all the data, T1-w scans were first registered to the MNI
atlas [43] by rigid registration via FLIRT [34], then corrected
for intensity inhomogeneity by N4 [44] and skull-stripped using
SPECTRE [45]. For the MS data, T2 , PD, and FLAIR images
were aligned to the T1-w image by a rigid registration.

Quantitative evaluation was carried out using the Dice co-
efficient [46] as the metric for similarity between whole-brain
segmentations. For lesion segmentations, we also use absolute
lesion volume difference (VD), lesion true positive rate (LTPR),
lesion false positive rate (LFPR), and average symmetric surface
distance (SD) [47], [48]. VD is the absolute VD between the
automatic and manual segmentations divided by the volume of
manual segmentation. LTPR is measured by dividing the num-
ber of lesions in the manual segmentation that overlap with a
lesion in the automatic one with the number of overall lesions
in the truth. This evaluates whether all lesions are detected or
not. Note that rather than using a lesion segmentation mask to
calculate the sensitivity, we use lesion count, which is inde-
pendent of boundary accuracy. LFPR is measured by dividing
the number of lesions in the automatic segmentation that do not
overlap with any lesion in the truth with the number of lesions in
the automatic segmentation. To calculate SD, the boundary vox-
els of the segmentation and truth are first determined. For each
voxel on one boundary, the closest voxel on the other boundary
is determined using unsigned Euclidean distance. The average
of all these distances, i.e., between truth and segmentation and
vice versa, gives the averages symmetric SD. More details on
these metrics can be found in [48].

III. RESULTS

S3DL was implemented in MATLAB (R2013a, The Math-
Works, Natick, MA, USA) using parallel computation. For
whole-brain segmentation (as in Sections III-C and III-D), the
total runtime was typically 20 min on 2.7 GHz 12-core AMD
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Fig. 4. Dice coefficients of three tissue classes and their weighted average between the true segmentation and dictionary based segmentation for phantoms with
3% and 5% noise are shown. The atlas is chosen as the phantom with 0% noise.

processors for one 181 × 217 × 181 sized 1 mm3 image, of
which approximately 10 min were spent on learning the dic-
tionary. The runtime is reduced to 15 min for lesion segmenta-
tion (see Section III-B), for which the dictionary learning takes
approximately 5 min. In comparison, OASIS [40] and Lesion-
TOADS [11] take about 5 and 20 min, respectively. SparseLab
[49] was used to solve (2). We used 3 × 3 × 3 patches in all our
experiments. To choose optimal w, we segmented one of the
IBSR subjects using a range of w ∈ [0.01, 0.21] and found that
the segmentation is stable in the range of [0.05, 0.15]; there-
fore, we chose the prior weight w as 0.10. More details are
available in the supplemental material. This selection ensures
the priors do not have too much influence on the segmentation
when the anatomy is widely different between subject and atlas,
as illustrated in NPH patients, described in Section III-D. The
parameters λ in (2) and η in (5) were chosen as 0.01.

A. Effect of Dictionary Size

To determine the effect of dictionary size (L) on the seg-
mentation, we varied L while segmenting Brainweb simulated
images [39]. If the dictionary size is too small, the dictionary
atoms may not represent the spectrum of subject patches well.
If it is too large, the computation time increases. Furthermore, it
has been shown that if the learnt dictionary ̂D1 is “incoherent”
(i.e., off-diagonal entries of the matrix ̂DT

1
̂D1 are sufficiently

small), then it is possible to optimally reconstruct an unknown
patch bj via (2) (with A1 ≡ ̂D1) if it is a noisy perturbation of
one or more patches from ̂D1 [36]. A proper dictionary size,
therefore, ensures more accurate representation of the atlas.

We chose a1 as a Brainweb phantom with 0% noise and s1
as the same phantom with either 3% or 5% noise, with 0% in-
homogeneity. {a2 , a3 , a4} were chosen as CSF, GM, and WM
tissue memberships, and a5 is the true three-class segmentation,
available also from Brainweb. Priors were not used in this exper-
iment. We segmented s1 using various dictionary sizes ranging
from 1000 to 6000 and compared against the known segmen-
tation. Dice coefficients of three tissue classes CSF, GM, and
WM, and their weighted average (weighted by the correspond-
ing volumes) between a5 and the segmentations are shown in
Fig. 4. The average Dice coefficient increases with dictionary
size, but near L = 5000, it plateaus at 0.965 for 3% noise (or

0.94 for 5% noise). The standard deviations of Dice coeffi-
cients, based on a set of ten instances of the phantom with 5%
noise, are 0.007, 0.003, 0.006, for CSF, GM and WM. A similar
experiment on IBSR data is performed where one subject is seg-
mented with multiple dictionary lengths using another subject
as atlas. Based on the accuracy of segmentation as well as to
keep runtime short, an optimal dictionary size of 5000 was also
observed. More details are available in the supplemental mate-
rial. We chose a dictionary size L = 5000 for the remainder of
the experiments.

B. Lesion Segmentation

In this section, we validated only the dictionary learning as-
pect without priors on a binary segmentation application, similar
to [21]. T1-w MPRAGE, T2 , PD-w, and FLAIR images are used
to segment WM lesions from MS patients. Using patches from
the subject and the atlas, a dictionary was learnt via (5), lesion
memberships were obtained as before via (6), and a threshold
was established to obtain a lesion mask. To reduce lesion false
positives, multiple atlases were used to generate lesion member-
ships and they were averaged to create a more robust estimate.
Selection of the number of atlases is described below.

Since only the WM lesions are of interest, it is possible to
add a WM atlas prior to automatically detect lesions within
WM. However, adding more features increases memory and
runtime; therefore, we simply obtained the lesion segmentations
by masking the membership images with a WM mask obtained
from LesionTOADS [11] to remove false positives, since we are
interested in segmenting WM MS lesions.

We used cross validation to find the optimal threshold for
generating lesion masks. Four random subjects were chosen
from the pool of 122 patients with MS. For each subject, three
memberships were generated using the other three as atlases
and were averaged to generate a mean membership. The mean
membership was thresholded at various thresholds and average
Dice coefficients (averaged over four subjects) are plotted in
Fig. 5(a). The maximum Dice is obtained at a threshold of 0.80,
which is used for the rest of the experiments.

To demonstrate the effect of the number of atlases on the
accuracy of the lesion segmentation, we chose the previous four
subjects as atlases and generated four memberships for each
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Fig. 5. (a) Average Dice coefficients (for four MS subjects) between manual lesion segmentation and thresholded S3DL generated memberships are plotted for
different thresholds on the lesion memberships. (b) Boxplots show Dice coefficients for 118 MS subjects between manual lesion segmentation and thresholded
mean lesion memberships. Horizontal axis shows number of atlas the memberships are averaged over, ranging from one to four. The median Dice coefficients are
0.521, 0.528, 0.549, and 0.555 for one to four atlases. (c) Boxplots show Dice coefficients between manual lesion segmentation and three automatic methods,
LesionTOADS [11], OASIS [40], and S3DL with four atlases. The median Dice coefficients are 0.411, 0.499, and 0.555, respectively.

Fig. 6. Examples of lesion segmentation on three subjects with MS are shown in each row. MPRAGE, FLAIR, T2 -w and PD-w images are used for segmentation,
although only MPRAGE and FLAIR scans are shown. Top row shows a subject where all three methods perform comparatively, although OASIS produces smooth
segmentation which in turn overestimates subtle changes in lesions (red arrow). Middle row shows an example where OASIS grossly overestimates lesions (yellow
arrow). Bottom row shows gross over-estimation of LesionTOADS.

of the remaining 118 subjects. Dice coefficients between the
thresholded mean segmentations (threshold = 0.80), averaged
over number of atlases ranging from one to four, are shown in
Fig. 5(b). The median Dice coefficients are 0.521, 0.528, 0.549,
and 0.555, respectively, for the one to four atlases used to av-
erage memberships, respectively. Both three and four atlases
produce significant improvement in Dice compared to using
one or two atlases (p < 10−4 via Wilcoxon signed-rank test),
although the Dice improvement in itself is small between three
to four atlases (0.006). Subsequent comparisons against other
methods are reported using four atlases.

Examples of lesion segmentations are shown in Fig. 6 for
three methods, LesionTOADS [11], OASIS [40], and S3DL.
The optimal parameters for OASIS were found by cross valida-
tion on the same four subjects used for training. LesionTOADS

being an unsupervised method does not need any training data.
However, an optimized set of “compactness parameters” [9]
were used for LesionTOADS, accounting for the amount of le-
sions present in the subject. OASIS generally produces the most
smooth segmentations compared to LesionTOADS and S3DL,
and sometimes cannot detect subtle changes in lesion boundary
(see top row in Fig. 6). If the lesion load is high, all three methods
are comparable, e.g., top row in Fig. 6, where the Dice coeffi-
cients are 0.589, 0.634, and 0.670 for LesionTOADS, OASIS,
and S3DL, respectively. If the lesion load is low, LesionTOADS
generally overestimates lesions, e.g., bottom row of Fig. 6, Dice
coefficients 0.081, 0.153, 0.307.

Fig. 5(c) shows a comparison of Dice coefficients between
manual and automated segmentations. The median Dice coeffi-
cients are 0.411, 0.499, and 0.555, for LesionTOADS, OASIS,
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Fig. 7. (a) Boxplots show VD for 118 MS subjects for three automatic methods, LesionTOADS, OASIS, and S3DL. The median VDs are 0.729, 0.268, and
0.267, respectively. (b) Automatic lesion volumes are plotted against manual lesion volumes. Each point indicates a subject. Solid lines are best linear fits of the
scatterplots.

Fig. 8. Boxplots show LTPR, LFPR, and absolute symmetric SDs in millimeters between automatic segmentation and manual segmentation for 118 MS subjects.
(See Section II-D for definitions.)

and S3DL, respectively. A nonparametric Wilcoxon sign-rank
test shows that S3DL is significantly better than the others
(p < 0.01 for both). We note that the magnitude of Dice co-
efficients are relatively low, and they are even exactly zero for
two subjects, which have very small lesion load. Since lesions
are small objects with a highly ambiguous boundary, Dice may
not be an appropriate measure of accuracy, when lesion load is
small [48].

Fig. 7(a) shows the lesion VD. Ideally, if the segmentation is
perfect, VD should be zero. The median VD for LesionTOADS,
OASIS, and S3DL are 1.014, 0.268, and 0.267, respectively, in-
dicating that LesionTOADS, OASIS, and S3DL differs from true
lesion volumes by 101%, 26.8%, and 26.7% on an average. A
nonparametric test reveals that VD is significantly lower in OA-
SIS and S3DL (p < 10−6) compared to LesionTOADS, while
there is no significant difference (p > 0.05) between OASIS
and S3DL. Fig. 7(b) shows scatter plots of manual versus auto-
matic lesions volumes for each subject. Solid green, magenta,
and red lines indicate best linear fits of the points. The inter-
cepts are 11.87, 1.86, and 1.33 cc, for LesionTOADS, OASIS,
and S3DL, respectively. The slopes of the best linear fits are
0.518, 0.818, 0.783. From Fig. 7(b), it is also evident that when
lesion load is small (less than 15 cc), LesionTOADS overesti-
mates the lesion most, followed by OASIS, and S3DL. Median
lesion volume on the manual segmentations was 7.79 cc, while
it was 15.99, 7.10, and 6.28 cc for LesionTOADS, OASIS, and

S3DL, with p-values being 2 × 10−10 , 0.091, and 0.144, respec-
tively. Therefore, S3DL and OASIS produce statistically similar
lesion volumes with the manual, while LesionTOADS produces
significantly higher lesion volume.

We plotted the LTPR and LFPR in Fig. 8. LTPR denotes
the ratio between number of detected lesions and number of
overall lesions in the truth. This metric evaluates if all true
lesions are detected. LTPR for S3DL is significantly higher
than OASIS (p < 10−4), but significantly lower than Lesion-
TOADS (p < 10−4), with median values being 0.516, 0.275,
and 0.368, respectively. The median LFPR for the three meth-
ods are 0.708, 0.516, and 0.444, respectively. S3DL produces
significantly lower LFPR (p < 10−4) compared to both OASIS
and LesionTOADS. We also examined the performance of the
three algorithms as a function of low, medium, and high lesion
volume. S3DL had at least equivalent or significantly better per-
formance in all three classes of lesion load compared to the other
algorithms in terms of Dice and LFPR.

Average symmetric SDs are also shown in Fig. 8. The median
SDs are 4.50, 3.32, and 2.32 mm for LesionTOADS, OASIS,
and S3DL, respectively. S3DL has significantly lower SD than
the other two methods (p < 10−6). The maximum SDs for all
three methods are more than 25 mm, indicating some gross
errors in the segmentations. These errors mostly occurs near the
cerebellum and frontal lobe, where the FLAIR images can have
hyperintensities in the cortex.
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Fig. 9. Dice coefficients between truth segmentation and automatically generated segmentations for four methods, TOADS [10], LoAd [6], nonlocal-patch-based
method [24], and S3DL, are shown for four tissue classes on 18 IBSR data.

Fig. 10. Subject with NPH is segmented using TOADS [10], LoAd [6], Freesurfer [12], nonlocal method [24], and S3DL. Rightmost column shows manual
delineation of the ventricles.

C. Experiments on IBSR Data

We evaluated the algorithm on 18 subjects from IBSR V2
database (http://www.nitrc.org/projects/ibsr), which have man-
ually segmented labels. We segmented the images into five
classes, sulcal CSF, GM, WM, ventricle and subcortical GM
(e.g., caudate, putamen, thalamus etc), and combined sulcal
CSF and GM memberships together after segmentation because
the provided manual segmentations excludes most of the sul-
cal CSF voxels [41]. Visually, the dataset contains two groups
with different contrasts, 6 MPRAGE-type and 12 SPGR-type
contrasts. Since any example-based method relies on “similar
looking” patches from an atlas, the atlas should be carefully
chosen so that a1 and s1 have similar tissue contrast.

Two subjects, one with SPGR-type and one with MRAGE-
type contrast, were randomly chosen as atlases for the two
groups. Gaussian blurred tissue label-masks (σ = 3 mm) were
used as priors. The remaining subjects were segmented using
the appropriate corresponding atlases. Dice coefficients compar-
ing the four methods, TOADS [10], LoAd [6], nonlocal-patch-
based method [24], and S3DL on the tissue classes are shown
in Fig. 9. Note that the nonlocal method, as provided by the
website, only produces subcortical GM and ventricle segmenta-
tions. We did not compare with Freesurfer, since Freesurfer has
previously been evaluated on the IBSR data (average Dice co-
efficients of 0.584 and standard deviation of 0.057) [50]. S3DL
outperforms the other three methods significantly in the ventri-
cles, (p < 0.01), using the Wilcoxon signed-rank test. Similarly,
S3DL produces significantly larger Dice coefficient for subcor-
tical GM than TOADS and LoAd (p = 0.0002 and 0.03, respec-
tively), but is similar to the nonlocal method (p = 0.10). The me-
dian Dice for ventricles and subcortical GM for TOADS, LoAd,
nonlocal method, and S3DL are 0.705, 0.587, 0.721, 0.790 and

0.621, 0.746, 0.754, 0.772, respectively. S3DL is significantly
better than LoAd on WM and GM segmentation (p < 0.01),
but gives similar segmentation to TOADS (p = 0.07 for GM
and p = 0.06 for WM). The median Dice for GM and WM
for TOADS, LoAd, and S3DL are 0.943, 0.859, 0.942 and
0.890, 0.718, 0.881, respectively.

D. Experiments on NPH Data

We applied S3DL on ten subjects with NPH having enlarged
ventricles. Fig. 10 shows one subject with five automated seg-
mentations and the manual delineation of the ventricles. Vi-
sually, S3DL produces most similar segmentation to the man-
ual. Freesurfer segments most of the ventricles as non-WM
hypointensities, while LoAd segments part of the ventricles
are sulcal CSF. The atlas is chosen to be a healthy volunteer
of age 50 years. We empirically selected the relaxation
factor parameter of LoAd for each subject separately so that
best ventricle segmentation was obtained. The relaxation fac-
tor adaptively smooths (or relaxes) the tissue memberships in
a patient-specific manner, similar to our adaptive atlases. The
Markov random field prior (mrf_beta) parameter of LoAd
was chosen to be 0.25. They are also segmented with Freesurfer
[12] using the -bigventricles switch. Manual segmenta-
tions were available only for the ventricles.

To demonstrate the effect of adaptive priors, Fig. 11(a) shows
the ventricle memberships of one subject for the first three iter-
ations. The first iteration does not include the adaptive priors;
therefore, the membership is low (<0.5) deep inside the ventri-
cles. Note that the membership is nonzero inside the ventricles
of the subject, even where the atlas allows only WM tissue. This
is due to the fact that patches have both intensity and priors as
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Fig. 11. (a) Ventricle memberships are shown for the first three iterations of the algorithm, along with the subject and a representative slice from the atlas.
(b) Dice coefficients of between manual ventricle segmentation and four automatic methods are shown for ten subjects with NPH.

features; but unlike a mixture model, the priors are not multi-
plicative. Therefore, a zero prior does not necessarily indicate a
zero membership.

Quantitative improvement is shown in Fig. 11(b) where Dice
coefficients between manually segmented ventricles and auto-
matic segmentations are plotted for the three methods. S3DL
produces the largest Dice coefficient (median 0.954) across
all subjects with very little variance, and it is significantly
(p < 0.01) larger than TOADS (median Dice 0.710), Freesurfer
(median Dice 0.843), LoAd (median Dice 0.840), and the nonlo-
cal method (median Dice 0.942). Median ventricle volume of the
manual segmentations is 145.5 cc, while it is 78.5, 124.1, 118.8,
136.5, and 172.0 cc for TOADS, Freesurfer, LoAd, nonlocal
method, and S3DL, respectively. The p-values are 6 × 10−4 ,
0.005, 0.001, 0.94, and 0.97, indicating that TOADS, Freesurfer,
and LoAd produce significantly lower volumes than the manual
segmentation, while the nonlocal method and S3DL do not have
any statistically significant VD.

IV. DISCUSSION AND CONCLUSION

We have presented a patch-based sparse dictionary learning
method for binary or multiclass MR brain image segmenta-
tion. The use of patches over single voxel intensities provides
improved discrimination of anatomical structures. Contrary to
previous patch-based segmentation methods, we use adaptive
priors to localize different tissues with similar intensities as
well as capture wide variabilities in anatomy between a subject
and an atlas. We do not require any deformable registration of
the subject to the atlas.

Algorithms for the automatic detection of cerebral WM le-
sions are an important tool for understanding the progression
of MS. Since lesions are often hyperintense in FLAIR im-
ages and hypointense in T1-w MPRAGE images, most meth-
ods for lesion segmentation [38], [51]–[53] estimate lesions
as outliers of joint intensity distributions. On the other hand,
example-based methods estimate a regression from intensity
features of a training MPRAGE and FLAIR pair of images to

their manual segmentation label, which is often binary [40],
[47], [54], [55]. Recently, patch-based lesion detection meth-
ods have been shown to out-perform a parametric model-based
method [56], [57].

Model-based lesion segmentation methods, such as Lesion-
TOADS, often find a single threshold from the joint intensity
distribution of MR images to identify lesions. If the intensity
of a voxel is below a certain intensity threshold in FLAIR, it
can never be segmented as a lesion. In contrast, example-based
methods look for similar patches (incorporating the neighbor-
hood information via 3-D patches as well) from the dictionary
and fuse the labels as delineated by human raters. Thus, even if
there is a patch with intensities below such a threshold (obtained
from a model-based method), it can have high lesion member-
ship if there are enough similar examples in the dictionary.

Although S3DL showed improved accuracy over Lesion-
TOADS and OASIS on most segmentation scores, the LTPR
was worse. A caveat of the LTPR measurement is that even if
there are additional lesions in the segmentation (as sometimes is
the case in overestimation), it is possible to have the best score
of 1. We believe that the improved LTPR of LesionTOADS over
S3DL is because they tend to overestimate lesions. On the other
hand, LFPR represents the fraction of detected lesions that are
not present in the truth. A caveat of this metric is that if a method
underestimates lesions, it is possible to get the best score of 0.
Also, LFPR does not provide an idea of the volume of false
positives.

A current limitation of the lesion segmentation method is
that for a new dataset from a different scanner or sequence, a
few atlases need to be manually delineated. Then the optimal
membership threshold and the number of atlases need to be
reestimated. The number of training atlases can be small though,
as we used four in our experiments. However, we have shown
that improvement in segmentation from one to four atlases is
fairly small, with median Dice coefficient increasing only by
0.03 in case of lesion segmentation.

We have currently optimized the brain segmentation algo-
rithm for five classes. Segmentations of other neuroanatomical
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structures such as the hippocampus, amygdala, or specific gyri
are certainly possible using the method. However, additional
atlases, and an extended set of features would be required given
the wide variability of the human anatomy and the ambiguous
boundaries of such structures.

The results on NPH data demonstrate the advantage of prior
adaptation. The difference in anatomy between the atlas and
the subject is widely variable; therefore, the fixed priors cannot
capture the range. However, the S3DL priors are adaptively
modified at each iteration to account for the wide variability.
This allows S3DL to produce accurate ventricle segmentations
even though such geometry is not present in the atlas.

Our approach learns a new “subject specific” dictionary for
every subject. To improve runtime of the algorithm, a dictionary
can be learnt on one image and then used to segment others.
However, this is possible only for a set of images acquired with
the same imaging sequence and at the same scanner and site.
Therefore, if the noise level on the images is similar, we expect
that one trained dictionary might be suitable across a class of
subject data.
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