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Introduction 

Rationale 

For many years PET centres around the world have developed and optimised their own analysis 

pipelines, including a mixture of in-house and independent software, and have implemented different 

modelling choices for PET image processing and data quantification. As a result, many different 

methods and tools are available for PET image analysis. 

This dataset aims to provide a normative tool to assess the performance and consistency of 

PET modelling approaches on the same data for which the ground truth is known.  

Aims 

This dataset was created and released for the NRM2018 PET grand challenge. The challenge aimed 

at evaluating the performances of different PET analysis tools to identify areas and magnitude of 

receptor binding changes in a PET radioligand neurotransmission study. 

Description of the dataset content 

The PET dataset refers to 5 simulated human subjects scanned twice. For each subject the first 

PET scan (PET1 – baseline) represents baseline conditions; the second scan (PET2 – displaced) 

represents the scan after a competitive pharmacological challenge in which the tracer binding has 

been displaced in certain regions of interest. A total of 10 dynamic PET scans are provided. 

The nature of the neuroreceptor tracer used for the simulation (hereafter referred to as 

[11C]LondonPride) wants to be as general as possible. Any similarity to real PET tracer uptake is 

purely coincidental. 

Each simulated scan consists of a 90 minutes dynamic PET acquisition after bolus tracer injection 

as obtained with a Siemens Biograph mMR PET/MR scanner. The data were simulated including 

attenuation, randoms and scatters effects, the decay of the radiotracer and considering the 

geometry and resolution of the scanner. PET data can be considered motion-free as no motion or 

motion-related artifacts are included in the simulated dataset. The data were binned into 23 frames: 

4×15 s, 4×60 s, 2×150 s, 10×300 s and 3×600 s. Each frame was reconstructed with the MLEM 

algorithm with 100 iterations. The reconstructed images available in the dataset are already decay 

corrected. Details on scan binning are reported in the ancillary file (.anc) associated with each 

dynamic PET image. No blood data is provided for any of the PET acquisitions. 

All provided PET images are already normalised in standard MNI space (182x218x182 – 1mm). A 

structural co-registered and resliced MRI template is provided (MNI_T1_2PET.img/.hdr and 

MNI_T1_brain_2PET.img/.hdr). 

Individual noise-free dynamic PET data have been simulated from individual set of kinetic 

parameters (𝐾1, 𝑘2, 𝑘3, 𝑘4 and 𝑉𝑏). Kinetic parametric maps are provided for each subject to define 

the ground truth of the tracer binding to tissues. Further information on the data simulation is 

reported in the next section.  
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No region segmentation is provided but is known that the cerebellum is the ideal reference region 

(𝑘3=0) and that the data have been simulated to have 𝐾1/𝑘2, 𝑘4and 𝑉𝑏are fixed to the same values 

for all the brain voxels. 

The regions of displacement (6 in total) are the same for all subjects as reported by the 

DisplacementROIs.img/.hdr map. The map is already co-registered and resliced to the PET scans 

and to the MRI template. 

The tracer binding displacement has been simulated by manipulating the individual 𝑘3maps only. 

Specifically, displaced 𝑘3 maps have been obtained from the baseline 𝑘3 maps by applying the 

following percental reduction to each of the following displacement ROIs: 

▪ ROI 1 – Displacement Map value = 1 – Displacement 27% 

▪ ROI 2 – Displacement Map value = 2 – Displacement 27% 

▪ ROI 3 – Displacement Map value = 3 – Displacement 21% 

▪ ROI 4 – Displacement Map value = 4 – Displacement 18% 

▪ ROI 5 – Displacement Map value = 5 – Displacement 18% 

▪ ROI 6 – Displacement Map value = 6 – Displacement 18% 

All the other kinetic parameters have been maintained identical between PET1 and PET2. 

A summary of the dataset folder hierarchy is reported in Figure 1. 
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Figure 1 – Overview of the dataset folder hierarchy 
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Description of data generation process 

Definition of the kinetic parameters for the simulation of the tracer binding. 

We used a dataset of 8 brain [11C]Ro154513 PET scans to generate the reference data. The best 

5 subjects (in term of quality of the parametric maps) were used as starting point to generate the 

data. We preferred to start from real measured PET data rather than arbitrary generated parametric 

maps in order to biologically account for the spatial covariance of the brain tissues. 

An unconstrained 2TCM was used for the quantification of the data applied at voxel. The variational 

Bayesian method (Castellaro, Rizzo et al. 2017) was used to reach a satisfying level of homogeneity 

on the final parametric maps and a limited outlier percentage (first level analysis). 

A constrained 2TCM was hence used for the re-quantification of the data. The following constraints 

were imposed to fulfil FRTM (Cunningham, Hume et al. 1991) requirements (second level analysis): 

Cerebellum was artificially constrained to be reference region (by setting 𝑘3=0); 

𝐾1/𝑘2,𝑘4and 𝑉𝑏  were fixed as the whole-brain average values obtained in the first level analysis 

(after elimination of outliers); 

Note that in cerebellum, white matter and brainstem only, quantification of PET data was performed 

with 1TCM_constrained (i.e. with 𝐾1/𝑘2 and 𝑉𝑏 fixed to the whole-brain average values obtained in 

the first level analysis). 

As post-processing, the parametric maps were smoothed with a local ‘median’ filter, 4 mm and 

normalized in in MNI space (2 mm), then interpolated in 1 mm MNI space using the individual 

structural MRI. 

Data Simulation process 

For the simulation of each of the 10 scans (5 patients, 2 scans each), time activity curves (TACs) 

for each voxel of the phantom were generated from the kinetic parameters using the 2TCM 

equations. The TACs had a resolution of 1 sec and included the effect of the radiotracer decay, 

which was simulated with a half-life of 20.34 min (11C half-life). Each voxel TAC was binned with the 

following framing: 4×15 s, 4×60 s, 2×150 s, 10×300 s and 3×600 s by using the mean activity value 

for each time frame. After this process, the dynamic phantom for each scan is ready to be used in 

the simulation of each scan. The phantoms had the same resolution as the parametric maps (1×1×1 

mm3). 

Each scan was simulated with a total of 3×108 counts and by modelling the different physical effects 

of a PET acquisition. For each frame of a scan, the phantom was smoothed with a 2.5 mm FWHM 

kernel (lower than the spatial resolution of the mMR scanner since the phantom was already low 

resolution) and projected into a span 11 sinogram using the mMR scanner geometry. Then the 

resulting sinograms were multiplied by the attenuation factors, obtained from an attenuation map 

generated from the CT image of the patient, and by the normalization factors of the mMR scanner. 

Next, Poisson noise was introduced by simulating a random process for every sinogram bin, 
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obtaining the sinogram with true events. A uniform sinogram multiplied by the normalization factors 

was used for the randoms and a smoothed version of the emission sinogram for the scatters, which 

were scaled in order to have 20% of randoms and 25% of scatters of the total counts. Poisson noise 

was introduced to randoms and scatters and added to the trues sinogram. 

Finally, each frame was individually reconstructed using the MLEM algorithm with 100 iterations, a 

2.5 mm PSF and the standard mMR voxel size (2.09x2.09x2.03 mm3). The reconstructed images 

were corrected for the activity decay and resampled into the original MNI space. For the simulation 

and reconstruction, an in-house reconstruction framework was used (Belzunce and Reader 2017). 

Figure 2 – Reconstructed and calibrated images for each frame 

  



NRM2018 – PET Grand Challenge dataset 

 

7 

 

Definition of the displacement ROIs 

Six regions of displacement have been manually generated (using ITKSnap) and applied 

consistently to all the subjects to generate displaced 𝑘3 parametric maps. Based on the 

neuroreceptor theory (Innis, Cunningham et al. 2007), any change in 𝑘3 would produce an 

equivalent change in 𝐵𝑃𝑛𝑑.  

The regions volumes of the regions ranged from 343mm3 to 2275mm3 and were selected to be in 

regions of higher tracer uptake at baseline. None of the displacement ROIs has a purely geometrical 

(e.g. cube or sphere) or anatomical shape. The regions have been created to represent different 

sizes and different levels of tracer displacement according to the following values: 

ROI Volume (mm3) Displacement (%) 

ROI 1 2555 27 

ROI 2 2275 27 

ROI 3 1152 21 

ROI 4 493 18 

ROI 5 343 18 

ROI 6 418 18 

Their spatial distribution is not symmetrically distributed across the brain. An overview of the 

displacement ROIs is reported in Figure 3. 

Figure 3 – Overview of the displacement ROIs 
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Acknowledging the resource 

Using the dataset is free for research and educational purposes. Please make sure you credit the 

resource when using it. 

Note that the dataset contains only simulated data and none of the PET exams included here refer 

to a real human participant. Hence its use is not limited by any data protection act. 

Organising team 

The following people have been involved in the generation and release of the dataset: 

▪ Mattia Veronese – King’s College London 

▪ Gaia Rizzo – Invicro London/Imperial College London 

▪ Martin Belzunce – King’s College London 

▪ Julia Schubert – King’s College London 

▪ Barbara Santangelo – King’s College London 

▪ Ayla Mansur – Invicro London/Imperial College London 

▪ Alex Whittington – Invicro London/Imperial College London 

▪ Joel Dunn – King’s College London 

▪ Graham Searle – Invicro London/Imperial College London 

▪ Andrew Reader – King’s College London 

▪ Roger Gunn – Invicro London/Imperial College London 

For any information please contact Mattia Veronese at mattia.veronese@kcl.ac.uk  
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