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We introduce a novel image-processing framework for tracking longitudinal changes in white matter micro-
structure using diffusion tensor imaging (DTI). Charting the trajectory of such temporal changes offers new
insight into disease progression but to do so accurately faces a number of challenges. Recent developments
have highlighted the importance of processing each subject's data at multiple time points in an unbiased way.
In this paper, we aim to highlight a different challenge critical to the processing of longitudinal DTI data, namely
the approach to image alignment. Standard approaches in the literature align DTI data by registering the
corresponding scalar-valued fractional anisotropy (FA) maps. We propose instead a DTI registration algorithm
that leverages full tensor information to drive improved alignment. This proposed pipeline is evaluated against
the standard FA-based approach using a DTI dataset from an ongoing study of Alzheimer's disease (AD). The
dataset consists of subjects scanned at two time points and at each time point the DTI acquisition consists of
two back-to-back repeats in the same scanning session. The repeated scans allow us to evaluate the specificity
of each pipeline, using a test–retest design, and assess precision, using bootstrap-based method. The results
show that the tensor-based pipeline achieves both higher specificity and precision than the standard FA-based
approach. Tensor-based registration for longitudinal processing ofDTI data in clinical studiesmay be of particular
value in studies assessing disease progression.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Diffusion tensor imaging (DTI) is a technique offering sensitivity
to tissue microstructure of white matter (WM) (Basser and Pierpaoli,
1996; Pierpaoli et al., 1996). DTI is playing an increasingly important
role in assessing white matter abnormalities in a variety of neurodegen-
erative disorders, including Alzheimer's disease (AD), vascular dementia
(Hanyu et al., 1999; Sugihara et al., 2004), and frontotemporal dementia
(Borroni et al., 2007; Matsuo et al., 2008). For example, in patients
with AD, increased mean diffusivity (MD) and/or reduced fractional
anisotropy (FA) compared to healthy controls have been reported for
several white matter tracts, including the corpus callosum, cingulum
bundle and fornix (Bozzali et al., 2002; Choo et al., 2010; Duan et al.,
2006; Fellgiebel et al., 2008; Mielke et al., 2009; Oishi et al., 2011; Rose
et al., 2000; Sexton et al., 2010).

Most DTI studies of neurodegenerative disorders have been cross-
sectional in nature. Few investigate the changes in DTI measures as a
function of disease progression. One notable exception is a longitudinal

study of AD byMielke et al. (2009), which showed that FA in the fornix,
cingulum, splenium, and cerebellar peduncle remained stable in AD
and healthy elderly subjects over a three-month follow-up. In contrast
to many cross-sectional studies, which employ voxel-based analysis,
Mielke et al. adopt region-of-interest (ROI) based analysis to provide
the sensitivity necessary for detecting subtle temporal changes in
white matter over a very short period of time. This suggests that ROI-
based analysis, which trades reduced spatial specificity for improved
sensitivity, may be an effective approach for measuring DTI changes
due to disease progression.

The effectiveness of ROI-based analysis is dictated by the accuracy
and consistency of ROI delineation across subjects. To date,most studies
of this kind define WM ROIs manually. Manual delineation utilises
expert knowledge in anatomy to ensure the accuracy of ROI definition.
However, this is labour-intensive and time-consuming. Furthermore, it
is also difficult to maintain a high-level of consistency for the entire
dataset of a study, especially when placing the ROIs for small and thin
tracts, such as the cingulum and the fornix, which are often plagued
with partial volume effect with their surrounding anatomy. This be-
comes evenmore challenging for studies designed to track longitudinal
changes. There is not only a need for between-subject consistency but
also for within-subject between-scan consistency. This challenge moti-
vates the present work.
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In this paper, we propose an automated and unbiased DTI analysis
pipeline for tracking longitudinal white matter changes. The pipeline
aims tomake ROI-based analysis bothmore accessible andmore robust
by combining best practices for unbiased longitudinal processing of
structural imaging data (Reuter et al., 2012; Yushkevich et al., 2010)
with recent advances in tensor-based image registration (Park et al.,
2003; Zhang et al., 2006).We evaluate the performance of the proposed
pipeline using data from an ongoing longitudinal study of AD and com-
pare it against the more common approach of using FA-based image
registration (Ardekani et al., 2007; Jones et al., 2002; Smith et al., 2006).

Materials and methods

Unbiased longitudinal DTI pipeline

Overview of the pipeline
The automated longitudinal processing pipeline is designed to enable

a temporally unbiased evaluation of two time points where all time
points of a subject are registered together to form a within-subject tem-
plate. This is created in a mean space in order to avoid any interpolation
asymmetry.

Interpolation asymmetries could arise when resampling follow-up
images to the baseline scan (Yushkevich et al., 2010), as only the
follow-up images are smoothed while the baseline image is unaffected.
Module A of Fig. 1 illustrates the generation of an unbiased within-
subject template for each subject in the study. The specific choice of reg-
istration method is discussed in the subsequent sections. The resulting
template is unbiased towards any single time point. The original images,
baseline and follow-up, are then transferred to this within-subject space
and averaged. Module B of Fig. 1 demonstrates the creation of the
group-wise (GW) atlas from the average images using iterative linear

and non-linear registration methods. The mapping from the subject
native space to its own within-subject template (warp field 1, W1, in
Fig. 1) and the mapping from the within-subject template to the GW
atlas (warp field 2, W2) were combined to create the deformation field
that defines the mapping directly from the native space to the GW atlas.

Choices of registration methods
In this study, we propose that using a registration method that in-

corporates the entire tensor will provide more accurate and sensitive
longitudinal measures than using FA based methods. For the tensor
registration, we used a publicly available tool, DTI-TK,2 for spatial
normalisation of DTI data (Zhang et al., 2006). We compared the
effectiveness of this method to a widely used FA-based method: all the
linear and non-linear registrations were performed using FSL (Smith
et al., 2004), FLIRT, FMRIB's linear image registration tool (Jenkinson
and Smith, 2001) and FNIRT, FMRIB's Non-Linear Registration Tool
(Andersson et al., 2007), with sum-of-squared differences as the cost
function. Table 1 shows the detail of the unbiased longitudinal pipeline
for each method.

Tensor-based pipeline. In the tensor-based registration pipeline, all linear
and non-linear registrations were performed using DTI-TK on tensor
images. By computing the image similarity on the basis of full tensor im-
ages rather than scalar features, the algorithm incorporates local fibre
orientations as features that drive the alignment of individualWM tracts.

For each subject, a within-subject template was generated by com-
puting the initial average template as a Log-Euclidean mean of the
input DT images from the two time points. The Log-Euclidean tensor

A

B

Fig. 1. Unbiased pipeline to study longitudinal changes in DTI parameters. Module A shows the step to create the unbiased within-subject template based on two time point images.
Module B shows the step to create the group-wise atlas based on the within-subject templates. Details of registration methods and type of input images for Tensor_GW, FA_GW and
FA_HS is shown in Table 1. BL = baseline, FU = follow-up.

2 http://dti-tk.sourceforge.net.

154 S. Keihaninejad et al. / NeuroImage 72 (2013) 153–163

http://dti-tk.sourceforge.net


averaging preserves WM orientation with minimal blurring (Arsigny
et al., 2006). The template was iteratively refined through the following
steps: the DT images are registered to the template and a refined tem-
plate is computed as an average of the registered DT images for the
next iteration. The process is repeated until the change between tem-
plates from consecutive iterations becomes sufficiently small, first with
affine and then with non-linear registrations (Zhang et al., 2007a,
2007c). The Euclidean distance of tensors (overall distance between
measures) is the metric used during the affine stage and the Euclidean
distance of deviatoric tensors (difference between the anisotropic com-
ponents of the tensors) is the metric used during the non-linear stage.
The former metric was chosen for the affine registration as it is more
stable over a larger capture range. Once a suitable affine alignment has
been established, the latter metric provides a more accurate non-linear
alignment between different white matter tracts (Zhang et al., 2006).
Then a GW atlas is created from all of the average images in the
within-subject space using the described iterative method. Maps of FA,
MD, axial (DA) and radial (RD) diffusivity were created from the GW
atlas and each registered tensor image in the GW atlas space. This pipe-
line will be referred to as the Tensor_GWmethod in this study.

FA-based pipeline. Two pipelines were designed to investigate the
FA-based approach:

• Group-wise FA (FA_GW): This pipeline is the same as the Tensor_GW
method but the FA based image registration is used instead to create
the within-subject template and GW atlas (Keihaninejad et al., 2012).

• Half-way space FA (FA_HS): In order to do a comparison with
established techniques, we applied the method proposed by Zatorre
et al. (2012). For each subject, the FA maps of two time points were
registered to a space mid-way between the spaces of two images
using an affine transformation, and averaged. The generated templates
were then non-linearly aligned to FMRIB58_FA in standard space and
averaged to generate a study-specific template. The FA maps in the
native space were then transformed to standard space by combining
the linear transform to the half-way space with the transform from
that half-way space to standard space.

Atlas-based ROI segmentation
To include the major WM tracts, the FA map of the GW atlas is seg-

mented using the LoAd (Locally Adaptive) tool, which is part of the
NiftySeg3 package (Cardoso et al., 2011). A binary mask was created
using a threshold of 50% on the WM probability map in order to focus
on areas that were likely to be predominantly WM.

The ICBM-DTI-81 white matter labels and tract atlas, developed by
Johns Hopkins University (JHU) was used to locate theWM tracts of in-
terest (Mori et al., 2005). To be consistent and avoid bias toward the
registration technique used in FLIRT and FNIRT, the FA map of the JHU
atlas was linearly and non-linearly registered to the final template FA
map using NiftyReg4 (Modat et al., 2010). This transformation was
used to warp the labels from the WM atlas to the template FA image
through nearest neighbour interpolation. In this study, we focused on
six white matter ROIs: the genu, body, and splenium of the corpus

callosum, as well as the fornix and cingulum bundles (left and right).
Each ROI was combined with the binary WM mask to remove voxels
that did not contain sufficient white matter. An example of the ROIs
overlaid onto an individual subject using the three methods can be
found in Fig. 2. These are the most common white matter ROIs where
the literature indicates a change in structures between those with AD
and controls (Douaud et al., 2011; Duan et al., 2006; Fellgiebel et al.,
2008; Rose et al., 2000). The fornix as the major outflow tract of the
hippocampus is very relevant to AD as is the cingulum, since both the
hippocampus and posterior cingulate are early sites of AD involvement
(Scahill et al., 2002).

Experimental evaluation

We evaluated and compared the above methods, Tensor_GW,
FA_GW, and FA_HS using what we refer to below as “specificity” and
“sensitivity” experiments. We also applied the tensor-based registra-
tion method on a cross-sectional dataset in order to validate that the
proposed method was identifying similar differences between AD
and controls as other widely used techniques.

3 http://sourceforge.net/projects/niftyseg.
4 http://sourceforge.net/projects/niftyreg.

Table 1
Comparison of key aspects between the three approaches of the longitudinal pipeline
described in Fig. 1: Tensor_GW, FA_GW and FA_HS.

Tensor_GW FA_GW FA_HS

Type of input image Tensor FA FA
Within-subject
reg (W1)

Linear, non-linear Linear, non-linear Linear

Group template
reg (W2)

GW linear,
non-linear

GW linear,
non-linear

Linear, non-linear
to FMRIB58_FA

Fig. 2. Resulting ROI overlays using the different registration methods for an example AD
subject. The ROIs illustrated here are: genu (red), body (green) and splenium (tan) of the
corpus callosum, fornix (blue) and left and right cingulum (yellow). The ROIs are defined
in the final group wise atlas space, so they are consistent for each time point.
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Specificity experiment
Test–retestdatawas analysed in this experiment. This dataset consists

of 11 AD patients (4 women; mean±sd age: 60.8±6.3 years; Baseline
MMSE score: 23.3±4.5) and 12 controls (10 women; age: 56.5±
8.6 years; MMSE score: 29.7±0.7) each scanned twice back-to-back
within the same session and will be referred to as test–retest dataset,
TT-23. There was no significant difference between AD subjects and con-
trols in mean age, but there was a higher proportion of women in the
control group (Fisher's exact test p=0.03). All subjects gave written in-
formed consent and the study had local ethics committee approval. The
patients had all been assessed in the Cognitive Disorders Clinic at the
National Hospital for Neurology and Neurosurgery in London, where
they had been given a clinical diagnosis of AD. These two DTI scans are
used to evaluate the reliability of the proposed methods.

Sensitivity experiment
To study group discrimination power and robustness of different

processing streams we analyse the same dataset as TT-23 when sub-
jects had a follow-up scan in 13.2±2.1 months and will be referred
to as longitudinal study dataset, LS-23. All subjects underwent clinical
assessment, neuropsychological testing, and MRI scanning both at
baseline and follow-up.

Since each subject in LS-23 had two scans at each visit, we divided
the scans into four combinations in order to study the robustness of
different approaches:

1. B1-F1: baseline first scan with follow-up first scan
2. B1-F2: baseline first scan with follow-up second scan
3. B2-F1: baseline second scan with follow-up first scan
4. B2-F2: baseline second scan with follow-up second scan

The null hypothesis would be that there would be no difference
between the measurements of change for any combination of any
two of these longitudinal scan-pairs.

Cross-sectional experiment
Twenty-two AD patients (11 women; mean±sd age: 61.9±

5.0 years; Baseline MMSE score: 20.7±5.5) and eighteen controls
(12 women; age: 57.8±10.4 years; Baseline MMSE: 29.7±0.6)
were included in the cross-sectional study and will be referred as
cross-sectional study dataset, CS-40. AD subjects and controls were not
significantly different in mean age (p=0.14, two-tailed t-test with un-
equal variance) and gender distribution (χ2(1) test statistic=1.7988,
p=0.18).

The baseline scans from subjects of LS-23 dataset were part of the
CS-40. 12 subjects had not had a follow-up scan and the follow-up
scans of five subjects, four control and one AD participant, had signif-
icant scanner related artefact. Details of subject demographics for the
longitudinal dataset (LS-23/TT-23) and the cross-sectional data set
(CS-40) can be found in Table 2.

The pipeline for the cross-sectional study using tensor-based regis-
tration is similar to the Tensor_GW pipeline except that no within-

subject template could be created, so the first step was creating the
GW atlas from all subjects. All of the DTI parameter maps were created
from the GW atlas and the images transformed into group-wise space
in a similar manner, as were the ROIs used for analysis.

Image acquisition

All the participants received a whole-brain T1-weighted and
diffusion-weighted scan acquired on the same3 Tesla scanner (Siemens
Tim Trio) using the same 32-channel head coil.

The 3D T1-weighted images were acquired using an MP-RAGE se-
quence with the following parameters: sagittal slices, matrix 256×256,
208 slices, 1.1 mm in-plane resolution, slice thickness=1.1 mm,
TE/TR=2.9/2200 ms, TI=900 ms, flip angle=10°.

Diffusion-weighted images were obtained on the AD and control co-
horts (first and second time points) using echo-planar imaging (SE-EPI,
TE/TR=91/6900 ms, 96×96 acquisition matrix and 55 slices, 2.5 mm
isotropic voxels) with 64 isotropically distributed orientations for
the diffusion-sensitising gradients at a b-value of 1000 s/mm2 and one
b=0 (b0) image. An extra set of 7 b0 images were acquired to improve
signal to noise. For each visit of subjects in CS-40 and LS-23 dataset, a
second set of weighted images with the same 64 sensitising gradients
and one b=0 was acquired immediately after the first sequence.

Imageswere affinely registered to the first unweighted volumewith
FLIRT to correct formotion and eddy currents and theweighting vectors
adjusted for rotation. Diffusion tensors were fitted with the Camino
package (Cook et al., 2006) using all acquired volumes.

Statistical analyses

As mentioned above, the unbiased longitudinal DTI pipeline avoids
interpolation asymmetry induced bias by treating all time points equiv-
alently. Another source of processing bias can be due to the registration
of the scalar features.

As a dimensionless measure of change we compute the percent
change (PC) of the FA of a ROIwith respect to the average FA defined as:

PC ¼ 100
FA2−FA1ð Þ

0:5 FA1 þ FA2ð Þ ð1Þ

where FAi is the FA of scan i, where i could either be referring to first or
second acquisition in the case of TT-23 or the first or second time point
in the case of LS-23.

To quantify test–retest reliability we used the intraclass correlation
coefficient (ICC) measure of FA (Bartlett and Frost, 2008). The ICC
value quantifies the consistency and reliability of the repeated scans.

The annualised rate of change in DTI metrics was computed as the
DTI parameter value of the follow-up scan minus that of baseline scan
divided by the duration between the two scans (in years). To compare
the annualised rate of change between AD cases and controls, the linear
regression model was used adjusting for baseline age and gender.

As mentioned in Section 2, two back-to-back scans were acquired
at each time point. The longitudinal percentage FA change can be com-
puted between the 4 possible combinations of the back-to-back scans:
1: B1-F1; 2: B1-F2; 3: B2-F1; and 4: B2-F2. In order to identify potential
bias or variability in the changemeasurement between any of these scan
combinations,we took the difference between the changemeasurements
coming from these 4 scan combinations to generate 6 pairs of difference
measurements (i.e. 1−2, 1−3, 1−4, 2−3, 2−4, and 3−4). We
performed paired t-tests between the 6 difference measurements to de-
termine if the percentage FA change was significantly different between
these 6 difference measurements (pb0.05).

In the cross-sectional analysis of the baseline scans, linear regression
models were used to assess differences in DTI metrics of white matter
tracts between patients and controls adjusting for age and gender. All

Table 2
Subject demographics and cognitive data. ⁎ indicates that one AD subject's MMSE was
not available at the time of the second scan.

Longitudinal
Control

Experiment
AD

Cross-sectional
Control

Experiment
AD

N 12 11 18 22
Age (years) 56.5 (8.6) 60.8 (6.3) 57.8 (10.4) 61.9 (5.0)
Gender (M/F) 2/10 7/4 6/12 11/11
MMSE at scan 1 29.7 (0.7) 23.3 (4.5) 29.7 (0.6) 20.7 (5.5)
MMSE at scan 2⁎ 29.3 (0.9) 20.0 (5.1) N/A N/A
Interval between scans
(years)

1.1 (0.2) 1.1 (0.2) N/A N/A
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analyses were done using Stata 12.0 (Stata, College Station, TX) and
considered p values of b0.05 significant for all analyses.

Results

Registration assessment

Figs. 3 and 4 illustrate the effects of the three different methods
on the within-subject template step (W1) and the between-subject
group-wise atlas construction step (W2). It is clear that there are

within-subject misregistrations in the corpus callosum region that
are most apparent when using the FA_HS method. In the FA_HS
method, only a linear registration method is used, which is incapable
of recovering non-linear changes that occur between visits. These
changes could not only be due to atrophy, but also due to changes
in positioning and head orientation between visits. For the inter sub-
ject registration, the group wise atlas resulting from the TENSOR_GW
technique providesmore clearly delineatedwhitematter anatomy than
the twomethods based on FA.When using all of the tensor information,
the registration technique can align between subjects the boundaries
of two adjacent tracts that have similar FA but different orientation.
Once the information is compressed into a non-directional metric like
FA, there is no longer the ability to resolve this information.

Specificity experiment

Fig. 5 shows the percentage change in FA for different structures
when processing the test–retest data with FA-based and tensor-based
approaches. As the scans are performed back to back, it would be
expected that the average change in each structure would be close to
zero. In the TT-23 set, nonzero average changes that were significant
were found using both the FA_GW and FA_HS methods for the body
and splenium of the corpus callosum and the cingulum bundle.

It can be observed in Fig. 5 that the proposed processing stream
based on tensor registration shows a much lower level of FA difference
between the test–retest scan; the differences were not significantly dif-
ferent fromzero for any of the ROIs. This suggests the tensor registration
is more robust to bias between the first and second acquisitions than
either the FA_HS or FA_GW pipelines.

The test–retest reliability, in terms of ICCs between repeated scans
is shown in Table 3. The ICC value is greater than 0.99 for all the white
matter ROIs when using Tensor_GW.

Sensitivity experiment

An assessment of differential change between baseline and follow-
up when using Tensor_GW method showed the annualised change
in FA was significantly different between AD and controls for the
genu, body and left cingulum bundle (Table 4). For MD, the change

Baseline Followup Difference Baseline Followup Difference
Tensor 

GW

FA GW

FA HS

AD Control

Fig. 3. Comparison of intra-subject registration approaches for two example subjects: one AD patient (left) and one control (right). All FA images have been normalised to an
intensity window of 0 to 0.7, while the difference images have an intensity display window of −0.1 to 0.1. There are very clear misregistrations present on the FA_HS method
in the corpus callosum.

FA_GW

FA_HS

TENSOR_GW

Fig. 4. Comparison of group-wise atlas methods by the three approaches. The FA atlas
using the TENSOR_GW technique provides a sharper atlas than the other two methods
indicating that the tensor-based method provides better alignment between subjects.
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was significantly different between AD and controls for the genu, body
and fornix. The annualised change of axial diffusivity was significantly
different between the two groups for the genu and body of corpus
callosum, while significant differences in annualised change of radial
diffusivity was observed in the genu, body and fornix.

FA_HS and FA_GW methods showed higher variation in the
annualised change of FA in both groups compared to Tensor_GW.
FA_HS showed no significant difference on annualised change of FA
between AD and controls but in MD of the genu, body, splenium
and fornix. FA_GW showed significant difference for the annualised
change of FA in the splenium and left cingulum and in MD for the
body of corpus callosum.

Fig. 6 shows plots of percent change averages (and standard errors).
Higher ability to distinguish the AD from the normal control group
based on the percent FA change can be seen mainly in the genu, body
and cingulum bundle when using Tensor_GW.

Figs. 7 and 8 show the variability of longitudinal change of FA as
percent change in LS-23 when different scan combinations of baseline
and follow-up are studied using different longitudinal approaches. The
results of the performed paired t-test between 4 scan combinations,
6 possible pairs of comparison, are shown in inset 4×4 matrix for each
structure and eachmethod. Each 4×4matrix indicates the combinations
that showed statistically significant difference with other combinations.
The lower triangle of the 4×4 matrix indicates which of these 6
combinations was significant for AD, the upper triangle for controls.
The significant result (pb0.05) is coloured for each group, AD in green,
controls in yellow and blank shows there is no significant difference in
the paired t-test. Diagonals are colour coded red as combinations are
not tested against themselves and also to serve as a boundary between
AD and controls.

Figs. 7 and 8 show that the Tensor_GW approach results in the same
FA longitudinal change in the controls and AD group regardless of

which scan combinations are used, which confirms the robustness of
this pipeline. For the Tensor_GW, the only significant difference was
found between B1-F2 and F1-B2 on the splenium of corpus callosum.
FA_HS shows the most biased results when using different scan combi-
nations for both groups and all the ROIs except the fornix. FA_GW
shows the same pattern of bias but less than FA_HS.

Cross-sectional experiment

Using a linear regression model and calculating the cross-sectional
associations, there were three ROIs in which FA differed at baseline
between the AD and control groups, controlling for age and gender.
Compared to controls, AD subjects had lower mean FA in the genu
of corpus callosum, fornix and bilateral cingulum bundle (Table 5).
AD patients had increased MD in all the white matter ROIs examined
in this study. AD subjects had also higher axial and radial diffusivity
compared to controls in all the white matter ROIs except the left
cingulum and splenium, respectively.

Discussion

The creation of a robust within-subject template yields an initial
unbiased estimate of the location of anatomical structures for a longi-
tudinal scheme. Our approach of treating all time points the same
removes interpolation asymmetry induced processing bias. The ten-
sor based registration method using DTI-TK provided significant im-
provements to the unbiased longitudinal pipeline that reduced bias
in the specificity experiments but also increased the ability to detect
real change in the sensitivity experiments. The motivation for using
diffusion-tensor data to drive the registration is that the orientational
information potentially provides powerful features for matching. Using
full-tensor information as a similarity metric for non-linear warping
has been shown to be effective in spatially normalising tract morpholo-
gy and tensor orientation (Park et al., 2003; Wang et al., 2011; Zhang
et al., 2006).

In the specificity experiment, the Tensor-GWmethod was the only
one of three to show no significant FA change between two repeated
scans. It also improves the reliability measured by ICC. However,
there is potential bias occurring in the test–retest experiment due
to several kinds of artefacts, including head motion artefact, bed vi-
bration artefact, etc. Although no correction for multiple comparisons
(due to the multiple ROIs) has been performed, the main goal of these
values is only to demonstrate that a clear trend exists concerning

Fig. 5. Percentage change in FA is shown based on different approaches. FA-based approaches clearly show a bias in percent change. Using the tensor-based method does not show a
significant difference between repeated scans in the test–retest dataset, TT-23. The mean percentage change of FA is shown with standard error (standard deviation divided by
square root of the sample size). Significant differences from zero (pb0.05) are denoted by + for controls and *for AD subjects.

Table 3
The reliability of the repeated scans analysed with three methods is measured using
the ICC.

White matter ROIs Tensor_GW FA_GW FA_HS

Genu 0.996 0.991 0.992
Body 0.997 0.983 0.986
Splenium 0.990 0.934 0.931
Fornix 0.997 0.987 0.995
Cingulum_R 0.999 0.958 0.953
Cingulum_L 0.997 0.984 0.959
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the specificity of each of the techniques that we evaluate. Our results
with the tensor-based technique are supported by the findings of
Pfefferbaum et al. (2003), where they evaluated within-scanner
and between-scanner reliability of FA in 10 subjects who had three
scans on two different scanners. Using a voxel-by-voxel analysis of
all supratentorial brain (gray matter+white matter+cerebrospinal
fluid) and a single-region analysis of the corpus callosum, they found
that FA correlation was equivalently and significantly higher within
than across scanners.

Despite a growing interest in the use of DTI to characterise neurode-
generative diseases, such as AD, there have been relatively few studies
looking at longitudinal changes inwhitematter integrity in the presence
of AD or other degenerative diseases (Mielke et al., 2009; Teipel et al.,
2010). Mielke et al. studied the FA and MD changes over 2.5 years in

the fornix and cingulum bundle and their correlation to hippocampal
volume andmemory decline (Mielke et al., 2012) using the samemanual
delineation protocol used in Mielke et al. (2009). With the previously
used ROI-based methods as utilised in Mielke et al. (2009), it is difficult
to objectively and reproducibly place ROIs on small or thin tracts on
the images of individual patients, when the slice orientation and
anatomical details (such as atrophy) may show variation between indi-
viduals at two or more time points and when the boundaries of the
white matter tracts are not easily identified. There is also variability
arising between different time points when creating a half-way or
group-wise space based on FA images because of some misalignment.

To the best of our knowledge, group-wise based methods (both
FA_GW and Tensor_GW) proposed in this study have not previously
been used for longitudinal DTI analysis. They have a number of

Table 4
Annualised change (mean±SD) for AD patients and normal controls (NC): each difference score (follow-up−baseline) was divided by the scan interval to create a rate of change
(slope). Values were multiplied by 1000 to reduce the number of decimal figures.

White matter ROIs AD (n=11) NC (n=12)

FA_HS FA_GW Tensor_GW FA_HS FA_GW Tensor_GW

FA
Genu −0.96±13.91 −10.89±14.67 −9.79±7.77‡‡ 3.94±8.72 −0.66±7.45 −0.20±5.83
Body −3.18±11.08 −5.89±11.96 −8.30±9.74‡‡ 6.00±8.27 1.78±7.44 5.04±6.34
Splenium −1.87±11.63 −7.69±9.95 †† −5.38±6.58 4.21±7.84 2.34±5.91 0.76±3.97
Fornix −22.73±22.05 −35.79±33.72 −22.65±18.77 −3.33±22.30 −13.95±32.45 −8.73±13.23
Cingulum_R 11.38±20.83 −14.37±12.52 −8.55±12.17 4.30±12.49 −3.22±14.42 −2.51±7.88
Cingulum_L 9.74±19.55 −14.55±11.94† −6.95±12.16‡ 7.12±11.50 −5.93±9.54 0.30±6.75

MD
Genu 29.90±36.16⁎ 14.89±22.55 21.73±21.04‡‡ 4.05±13.06 7.04±14.54 −0.04±9.76
Body 49.49±45.25⁎ 9.07±14.96† 11.72±20.05‡‡ −1.14± 24.17 −9.73±16.46 −11.29±11.98
Splenium 59.49±51.02⁎⁎ 7.25±13.02 13.94±20.01 −3.02±20.84 −5.68±14.58 −1.45±12.68
Fornix 86.62±55.55⁎⁎ 90.77±98.42 98.11±70.15‡‡ 1.18±63.63 45.78±75.25 26.07±36.43
Cingulum_R 1.95±24.17 21.08±32.99 17.06±21.76 2.90±19.60 13.84±19.98 7.51±17.89
Cingulum_L −3.47±23.34 24.99±30.74 20.28±29.16 −5.53±20.18 9.68±20.50 12.19±17.40

R: Right; L: Left; AD vs. NC using FA_HS (*,**), FA_GW (†,††), Tensor_GW (‡,‡‡); *,†,‡:pb0.05; **,††,‡‡:pb0.01.

Fig. 6. Percent FA change of the longitudinal LS-23 dataset for Tensor_GW (top); FA_GW (middle) and FA_HS (bottom) processing.
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advantages over the FA_HS method. First, there is no limitation with
regards to processing only two time points. Second, non-linear
within-subject registration can deal with the atrophy that may
occur between time points in a longitudinal study. Third, creating
an inter-subject group-wise atlas eliminates the potential for bias

when spatially normalising elderly controls and AD patients, com-
pared to a standard template of adult subjects such as FMRIB58_FA.
We show this third benefit for voxel-based analyses in a recent
study (Keihaninejad et al., 2012) that uses a method nearly identical
to the FA_GW method. In this study, we further illustrate, through

Fig. 7. Percent FA change of the LS-23 dataset on different baseline follow-up scan combinations using Tensor_GW, FA_GW and FA_HS pipeline in the genu, body and splenium of
the corpus callosum. Paired t-test was performed between each of the combinations to determine if the difference between the percent FA changes was significantly different
(pb0.05), resulting in 6 total tests each for AD and controls. The inset in each graph is a 4×4 matrix which indicates the combinations that achieved statistically significant
difference (1 = B1F1, 2 = B1F2, 3 = B2F1, 4 = B2F2). The lower triangle of the 4×4 matrix shows the results for AD, the upper triangle for controls. Diagonal are colour coded
in red as combinations are not tested against themselves. B: baseline, F: follow-up, 1: first scan, 2: second scan, L: Left, R:Right.

Fig. 8. As in Fig. 7 but the fornix, right and left cingulum.
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the sensitivity and specificity experiments, that the unbiased longitu-
dinal pipeline using tensor information significantly improves preci-
sion of studying longitudinal change based on DTI. In this study, we
focussed on using ROI based measures such as the ones used by
Mielke et al. (2012) to provide similar quantitative measures to
those that are currently in the literature and have potential utility in
the clinic. In future work we hope to apply the Tensor_GW method
to voxel-based techniques, such as TBSS, to see if it can improve the
results that were obtained using FA_GW.

Further, we studied different scan combinations on longitudinal
change of FA when either first acquisition or second one is employed
as the longitudinal dataset. Both FA-based approaches showed signifi-
cant differences in the change of key DTI metrics, such as FA, based on
different scan combinations. One scan in the visit should not provide
any systematically different results from another. The tensor-based
approach showed the fewest significant differences between different
baseline and follow-up scan combinations for the WM ROIs. Only the
splenium of the corpus callosum was significantly different between
B1-F2 and B2-F1. This differencewas in the same direction as the signif-
icant differences for FA_HS and FA_GW in the test–retest experiments,

suggesting a small bias between the first and second diffusion acquisi-
tions which the tensor registration is more reliably able to reject.

The cross-sectional experiment demonstrated significant differ-
ences in fiber tract integrity (as measured by FA) in AD vs. controls
in the genu of the corpus callosum, fornix and the cingulum bundle
bilaterally. Whilst a reduced FA and/or an increased MD in the corpus
callosum is one of the most consistent findings in AD (Douaud et
al., 2011; Liu et al., 2011), there has been conflicting evidence about
whether the genu (Head et al., 2004; Xie et al., 2006) or the splenium
(Rose et al., 2000; Takahashi et al., 2002) shows the greatest neuropath-
ological change. These conflicting results may be due to differences in
the selection of patient populations. In our study, we found a decrease
in FA in the genu accompanied by an increase of MD in the genu, body
and splenium. The reduced FA in the bilateral cingulum is consistent
with other studies (Catheline et al., 2010; Ding et al., 2008; Kiuchi
et al., 2009; Mielke et al., 2009; Nakata et al., 2008; Takahashi et al.,
2002; Zhang et al., 2007b). The increases of MD in the corpus callosum,
fornix and cingulum were also supported by other research (Agosta
et al., 2011; Douaud et al., 2011; Duan et al., 2006). In the event of con-
comitant (but not quite significant) increases in both axial and radial
diffusivity, MD provides a pooled measure that may be statistically
more sensitive than either of the individual component measures.

Our dataset in this study was limited to two time points. The pro-
posedunbiased longitudinal processing based on the tensor information
can however be extended to evaluate scans that have been collected at
more than two time points. The regions of interest which showed a sig-
nificant change in diffusivity metrics over one year (namely the fornix,
left cingulum and genu and body of corpus callosum) in the AD patients
were all already significantly different from controls at baseline. It
therefore seems that the particularly vulnerable white matter tracts in
AD show evidence of progression of pathology over a one year interval,
even in established disease. Investigation of the pattern of change in
DTI metrics at multiple different stages during the course of AD will be
an important direction for future research. Another area will be the in-
vestigation into the involvement of other white matter tracts, such as
the uncinate and superior longitudinal fasciculus. The patients in this
study were all below the age of 72, representing a relatively young AD
cohort. This reflects the referral pattern to the Cognitive Disorders Clinic
fromwhich theywere recruited; as a tertiary centre run by neurologists,
a high proportion of the patients referred to the clinic have early onset
dementia. The benefit of studying a relatively young cohort is that
they have fewer co-morbidities and it is therefore more likely that the
imaging changes observed are secondary to AD rather than other or
mixed pathologies such as vascular disease. However, it will be impor-
tant for future studies to addresswhether our findings are generalisable
to more elderly cohorts of AD patients. Although our linear regression
models accounted for age and gender, the gender imbalance between
the groups in the specificity and sensitivity experiments should be
considered a limitation of the study.

Although we used WM tissue segmentation to measure the DTI
parameters, there is still the risk of partial volume effects and CSF con-
tamination in thin structures like the fornix. Futurework should include
strategies to correct for CSF-contamination, for example correcting on
a voxel-wise basis using the Free Water Elimination (FWE) approach
(Metzler-Baddeley et al., 2012; Pasternak et al., 2009).

There is an increasing need to develop biomarkers that reflect neural
changes at the earliest stages of the disease in order to select appropri-
ate individuals for trials of disease modifying therapies and, potentially,
to look for therapeutic effects. With the design of a number of pre-
symptomatic prevention trials for AD now underway (Bateman et al.,
2011; Reiman et al., 2010), this issue is particularly timely. Whilst
most studies in neurodegenerative disorders have historically focussed
on greymatter, it is becoming clearer thatwhitematter involvement oc-
curs early on in the disease process, and DTI provides an opportunity to
measure these changes. Measure of within-subject longitudinal change
may be more sensitive biomarkers of neurodegeneration compared to

Table 5
Descriptive statistics of FA, MD, DA and RD (mean±SD); significance for comparison
between subject groups; the 95% confidence intervals (CI) for the adjusted differences
between group means (the mean for the patient group minus the mean for the healthy
group).

White
matter ROIs

NC
(n=18)

AD
(n=22)

Adjusted difference
(95%CI)

P-value

FA (raw values)
Genu (CC) 0.601±0.035 0.562±0.036 −0.032 (−0.056,−0.009) 0.006
Body (CC) 0.590±0.035 0.571±0.034 −0.015 (−0.038, 0.007) 0.186
Splenium
(CC)

0.659±0.032 0.643±0.026 −0.011 (−0.029, 0.006) 0.206

Fornix 0.411±0.041 0.353±0.042 −0.044 (−0.071,−0.018) 0.001
Cingulum
bundle R

0.456±0.028 0.418±0.031 −0.032 (−0.051,−0.013) 0.001

Cingulum
bundle L

0.445±0.033 0.413±0.031 −0.027 (−0.047,−0.007) 0.009

MD (10 −3 mm 2/s)
Genu (CC) 0.866±0.045 0.970±0.074 0.086 (0.040, 0.133) 0.001
Body (CC) 0.879±0.047 0.940±0.064 0.051 (0.008, 0.093) 0.021
Splenium
(CC)

0.904±0.068 0.975±0.061 0.053 (0.007, 0.099) 0.023

Fornix 1.758±0.204 2.037±0.160 0.211 (0.100, 0.322) 0.001
Cingulum
bundle R

0.817±0.034 0.902±0.061 0.074 (0.036, 0.112) b0.001

Cingulum
bundle L

0.802±0.057 0.880±0.084 0.059 (0.004, 0.113) 0.034

DA (10 −3 mm 2/s)
Genu (CC) 1.563±0.039 1.664±0.070 0.079 (0.038, 0.120) 0.001
Body (CC) 1.572±0.047 1.631±0.059 0.043 (0.004, 0.083) 0.030
Splenium
(CC)

1.702±0.078 1.796±0.068 0.073 (0.021, 0.125) 0.007

Fornix 2.560±0.189 2.814±0.160 0.172 (0.064, 0.280) 0.003
Cingulum
bundle R

1.259±0.037 1.312±0.048 0.050 (0.020, 0.081) 0.002

Cingulum
bundle L

1.214±0.053 1.263±0.072 0.033 (−0.013, 0.079) 0.158

RD (10 −3 mm 2/s)
Genu (CC) 0.517±0.052 0.625±0.077 0.090 (0.040, 0.140) 0.002
Body (CC) 0.532±0.054 0.595±0.069 0.054 (0.006, 0.102) 0.026
Splenium
(CC)

0.505±0.066 0.566±0.058 0.043 (−0.000, 0.088) 0.054

Fornix 1.356±0.212 1.681±0.174 0.231 (0.113, 0.348) b0.001
Cingulum
bundle R

0.596±0.038 0.697±0.072 0.086 (0.042, 0.131) b0.001

Cingulum
bundle L

0.595±0.064 0.688±0.094 0.072 (0.011, 0.133) 0.022

CC: corpus callosum; R: right; L: left; NC: normal controls.
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cross-sectional measures of a population. Thus, we have developed a
method for the longitudinal study of DTI data in order to determine
which white matter tracts become most affected by AD pathology
over time with greater confidence.
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