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Registration Techniques
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Abstract—Functional localization is a concept which involves the
application of a sequence of geometrical and statistical image pro-
cessing operations in order to define the location of brain activity
or to produce functional/parametric maps with respect to the brain
structure or anatomy. Considering that functional brain images
do not normally convey detailed structural information and, thus,
do not present an anatomically specific localization of functional
activity, various image registration techniques are introduced in
the literature for the purpose of mapping functional activity into
an anatomical image or a brain atlas. The problems addressed
by these techniques differ depending on the application and the
type of analysis, i.e., single-subject versus group analysis. Func-
tional to anatomical brain image registration is the core part of
functional localization in most applications and is accompanied
by intersubject and subject-to-atlas registration for group anal-
ysis studies. Cortical surface registration and automatic brain la-
beling are some of the other tools towards establishing a fully au-
tomatic functional localization procedure. While several previous
survey papers have reviewed and classified general-purpose med-
ical image registration techniques, this paper provides an overview
of brain functional localization along with a survey and classifica-
tion of the image registration techniques related to this problem.

Index Terms—Brain functional localization, fMRI image
processing, functional imaging, survey of image registration
techniques.

I. INTRODUCTION

FUNCTIONAL localization is a concept for defining the lo-
cation of brain activity or functional maps with respect to

the brain structure or anatomy [1], [2]. Previously, this problem
was addressed in a more general framework called brain map-
ping [3]. Toga and Mazziotta have published a series of edito-
rial books on the role of image registration techniques in brain
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mapping [4]–[6]. Many of the techniques that are discussed in
these papers can be utilized to solve different aspects of the func-
tional localization problem. Functional localization has impor-
tant applications in neuroscience, in neurophathological studies
of brain functional disorders, and also in neurosurgery in order
to minimize postoperative functional deficits and neurological
morbidity.

Functional brain images [e.g., functional magnetic resonance
imaging (fMRI), positron emission tomography (PET), and
single photon emission computed tomography (SPECT)] do
not generally contain detailed structural information and, thus,
do not provide an anatomically specific localization of func-
tional information unless they are mapped to an anatomical
image or brain atlas. The core part of a functional localization
procedure is a sequence of image processing operations that
involve resampling and registering functional images into an
anatomical space. In single-subject studies, the anatomical
space is simply defined by a high-resolution anatomical image,
such as a T1-weighted MRI. The problem becomes more
complicated when analyzing the functional information of a
group of subjects. In group-analysis studies, the anatomical
variability of the brains of different subjects is of concern,
and requires performing an intersubject or subject-to-template
nonrigid registration. This variability can be partially compen-
sated via nonrigid registration techniques, ranging from affine
registration to match the size and shape of different brains to
high-dimensional brain warping techniques [6] to match the
cortical surface and internal brain structures. These techniques
are normally used to register the brains of different subjects
into a custom or standard brain template or atlas.

Fig. 1 shows diagrams of the most commonly used func-
tional localization procedures. Note that functional localization
is only a part of functional image analysis. The other functional
image preprocessing steps, including realignment via mono-
modal registration [7], [8], prospective and retrospective mo-
tion correction [9], and distortion correction [10], [11] are done
prior to statistical analysis and functional localization proce-
dures. The statistical analysis may be applied at different occa-
sions during the process of functional localization. In a single-
subject analysis [Fig. 1(a)], it is performed either before or after
functional-to-anatomical registration. When it is done before the
registration, the extracted activation maps have to be mapped to
the anatomy with the same transformation that maps the func-
tional image into the anatomical image. In most group analyses,
the statistical analysis is done after intersubject registration; and
intersubject registration is applied either to the functional im-
ages or to the anatomical images [Fig. 1(b) and (c)]. In the
former, all the functional images are registered to a functional
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Fig. 1. Various functional localization procedures, (a) single-subject analysis,
(b) and (c) group analysis: 
Functional-to-anatomical registration, 
 inter-
subject or subject-to-atlas registration (spatial normalization), and 
 activation
labeling (with respect to a standard brain atlas).

template image and the functional template is further registered
to a standard brain atlas. In the latter, the functional-to-anatom-
ical registration is done in each subject’s coordinate system and
the intersubject or subject-to-atlas registration is done for the
high-resolution anatomical images [Fig. 1(c)].

In almost all functional localization procedures, except in
some of those applied to neurosurgery, a final step consisting
of activation labeling is required. Usually, this step involves a
nonrigid registration to a standard digital brain atlas. By re-
porting the results in a standard labeling framework, different
studies can be compared. A digital brain atlas consists of a typ-
ical high-resolution brain structure with anatomical labels, coor-
dinate labels, and sometimes functional labels [1], [3]. For group
analyses, a brain template (e.g., the target brain) is registered to
the brain atlas prior to functional localization, and a simple 3–D
overlay to the atlas space is done for activation labeling. The ac-
curacy and reliability of activation labeling is determined by the
accuracy of registration between the different subjects and the
template or the atlas, or between the template and the atlas.

A typical registration algorithm consists of four components:
a correspondence basis, a transformation model, an optimiza-
tion framework, and an interpolation method. Two images or
two sets of images are involved in a registration algorithm; the
source or moving image and the target or refer-
ence image are considered to be functions that
assign scalar intensity values to the points in the 3–D physical
coordinates. The optimization framework is set up to find the ap-
propriate parameters of the transformation model
to maximize a measure of similarity based on correspondences

Fig. 2. A typical registration algorithm consists of four main components: a
transformation model, a correspondence basis, an optimization technique, and
an interpolation method. The optimization problem can be carried out in a mul-
tiresolution or multiscale framework.

between the source and target images. This similarity term is
denoted by . When the transformation is high-di-
mensional, a regularization term is also added to the
optimization function to preserve the topology and smoothness
of the source image. The target image is fixed and the source
image is transformed and resampled in each iteration of the reg-
istration algorithm by a fast and accurate interpolation method.
These components are shown in Fig. 2. The registration algo-
rithm may be solved in a multiresolution or multiscale frame-
work with a Gaussian filter having a scale parameter . The
termination condition is normally defined by a threshold on the
variation of the optimization function.

The next three sections of this paper survey the state-of-
the-art in brain atlases and brain templates, functional-to-
anatomical registration, and intersubject registration. The four
components (correspondence basis, transformation model,
optimization framework, interpolation method) of a registration
algorithm are considered in four subsections of Section III
(functional-to-anatomical registration), followed by a sub-
section on the validation of functional to anatomical brain
image registration. Except for the transformation model,
the key developments in the components of a registration
algorithm (correspondence basis, optimization framework,
and interpolation method) have occurred for studies of mul-
timodality functional-to-anatomical registration; thus, their
main classification and discussion is presented in Section III.
On the other hand, the main classification and discussion of
transformation models is done in the section on intersubject
registration (Section IV-B), since only a small portion of the
papers on functional-to-anatomical registration have utilized
transformations other than rigid or affine. The classification in
Section IV is done from an application point of view; various
intersubject registration techniques are listed in Section IV-A
and are classified according to the transformation model and
the correspondence basis in Section IV-B. Validation of inter-
subject registration techniques is different from validation of
functional-to-anatomical registration techniques, and is dis-
cussed in Section IV-C. Cortical surface registration techniques
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are considered in Section IV-D. Finally, in the last section, all
of the research topics are viewed from the perspective of the
currently active research directions.

Several books contain tutorial articles on related topics
[4]–[6], [12], [13]. The books on functional MRI by Jezzard et
al. [14] and Huettel et al. [15], and a review article on fMRI
preprocessing by Strother [16] provide general overviews of
fMRI processing and analysis. Recent survey papers on image
registration [17], [18] have presented extensive reviews on
mutual-information-based medical image registration. This
survey paper, however, is focused on those registration tech-
niques which are related to the problem of brain functional
localization, and hence the classification presented here is done
from the application point of view. A few more general survey
papers [19]–[21] may also be of interest to the reader.

II. BRAIN ATLASES AND BRAIN TEMPLATES

Due to large variations in the brain structure of human pop-
ulations, the construction and use of standard brain atlases and
brain templates pose a fundamental challenge in human brain
mapping and in particular in brain functional localization [22].
As evident from Fig. 1, the use of brain atlases and brain tem-
plates in functional localization is twofold: first, they provide a
standard basis for activation labeling, and second, in group anal-
ysis studies, the functional images of different subjects can only
be compared and analyzed if the anatomical variations are com-
pensated via appropriate mapping to a brain template or brain
atlas. The words “brain atlas” and “brain template” are used
interchangeably in the literature, while it is useful to discrim-
inate them based on the difference in applications. A brain atlas
provides a standard high-resolution structural brain [3] which
normally contains coordinate, anatomic, cytoarchitectonic and
functional labels and is basically used for activation labeling [1],
[23]–[26]. Brain templates can be considered to be a subclass of
brain atlases, which do not need to have labels or extra informa-
tion about the anatomic or functional significance of locations,
and are normally used as reference images for group analysis
studies. For reporting the results in a standard coordinate system
with a standard activation labeling, the brain template should be
mapped to a standard brain atlas.

The construction of good representatives of human brain
atlases involves specialized strategies for population-based av-
eraging of anatomy that generates local encoding of anatomic
variability and also cortical topography. This creates relatively
crisp anatomical images with highly resolved structures in their
mean spatial location and maps of cortical variability. These
strategies may incorporate high-dimensional nonrigid registra-
tion to reconfigure the anatomy of a large number of subjects
in an anatomic image database. Both the construction of brain
atlases and their use are highly dependent upon advances
in nonrigid intersubject registration [27]. An introduction to
the construction and use of brain atlases and brain templates
is presented in this section, while the details of intersubject
registration techniques are discussed in Section IV. The goal in
this section is neither to provide a tutorial on atlas construction
nor a thorough review of the earlier studies, but to provide an
overview of the role of brain atlases and brain templates in
brain functional localization. The most prominent studies have

Fig. 3. A typical MRI brain scan in the Talairach coordinates, (a) the brain
scan before the Talairach transformation (AC and PC are detected manually
and the AC-PC line is aligned to the Talairach atlas), (b) after the Talairach
transformation, the 12 different regions of the brain are linearly transformed to
match the size and shape of the Talairach brain atlas.

been cited. More comprehensive tutorials can be found in the
articles by Toga and Thompson [3], Thompson et al. [27], and
Mazziotta [28].

A. Atlas of Talairach and Tournoux

In 1988, Talairach and Tournoux [29] introduced a stereo-
taxic atlas of the human brain based on post mortem sections
of a 60-year-old female subject’s brain. Although a single brain
cannot be a good representative of the human brain, the Ta-
lairach atlas has become the de facto standard in brain mapping
[1], [25]. The Talairach stereotaxic coordinate system is based
on two relatively invariant subcortical point landmarks, the an-
terior commissure (AC) and the posterior commissure (PC). The
AC is taken to be the origin of the coordinate system, the AC-PC
line to be the y axis, the vertical line passing through the inter-
hemispheric fissure to be the -axis, and the line passing through
the AC and being at right angles to the and z axes to be the

-axis. The three axes, along with a line parallel to the -axis
passing through the PC, divide the brain into 12 cubic rectan-
gular regions. Extremes of the cortical area are defined on each
side and piecewise affine transformations are applied to these
areas to map different brains to the Talairach standard coordi-
nates [25], [30]. Fig. 3 shows a typical MRI brain scan registered
to the Talairach coordinates using the AFNI software package
[31].

B. Digital Brain Atlases

The large size of today’s high-resolution brain datasets
demands the use of automated computer algorithms, thus
increasing the usefulness of computer-based brain atlases
[22]. Computer-based digital representations of standard brain
atlases are extensively used in brain mapping [3], functional
and anatomical localization [30], [32]–[34], and automated
activation labeling [23], [24]. Remarkable earlier investigations
have appeared in [33] and [35]–[42]. Many of the digital
brain atlas frameworks, such as the Harvard Brain Atlas [42],
Talairach Daemon [23], Montreal Neurological Institute’s
(MNI’s) single subject atlas [28], [43], and Cerefy Neuroradi-
ology Atlas (CNA) [44], [45] have been developed based on an
initial mapping to the Talairach standard coordinate system. A
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piecewise affine transformation of brain images to the Talairach
coordinate system has constituted common practice for group
analysis studies [25], [46]. Anatomic and functional labels
including Brodmann areas are also well defined on digital
representations of the Talairach atlas.

Nevertheless, not only is a single-subject brain such as the
Talairach brain not sufficiently representative of the human
brain structure, but also the piecewise Talairach transformation
cannot compensate for the anatomic variability of different
brains. More successful brain atlases can be obtained by av-
eraging the anatomy of a population of brain images through
high-dimensional nonrigid intersubject registration [47]. There
have been many studies on the creation of more accurate
high-resolution brain atlases based on state-of-the-art nonrigid
registration techniques, for example [48]–[54]. Based on a
database of high-resolution anatomical brain images, these
techniques typically involve a first stage of registration to the
Talairach stereotaxic space, a second stage of computing a
geometric average brain, and a final stage of intensity averaging
over the images registered to the computed geometric average
brain. The second stage is the main part of this procedure,
and involves the definition and computation of the geometric
average brain. Intuitively, a minimum deformation from the
database of brain images to the average brain is an appropriate
measure. In [50], all the images are nonrigidly registered to
every other image in the database, and all the registered images
are averaged. In [48], the minimum deformation target brain
is defined as the average brain that minimizes the deformation
of all the brains in the database to the average target brain. As
alternative approaches, a Bayesian approach to minimize the
deformation energy of a set of multimodality images is utilized
in [53]–[55] and a constrained optimization problem is solved
in [51] to maximize the similarity of images to the average
brain while constraining the sum of all required deformations
to zero. All of these techniques utilize high-dimensional non-
rigid intersubject registration techniques that are covered in
Section IV of this survey article.

C. Probabilistic Atlases

A probabilistic brain atlas is a probability-encoded map of
anatomic variability in the human brain, and can also be used to
create an anatomical brain atlas with highly resolved structures
in their mean geometric and intensity configuration. A statistical
analysis along with a high-dimensional nonrigid registration al-
gorithm is normally used in the creation of probabilistic brain at-
lases. Existing techniques can be classified into intensity-based
and label-based techniques. The main problem of the techniques
based on intensity averaging of the preregistered brains of a
large group of homogeneous subjects is that the cortical and
subcortical structures become blurred in the averaging process.
Label-based techniques are based on brain segmentation, which
is done either manually or by automatic or semi-automatic seg-
mentation of landmarks. The atlas is normally described as a
probability map of the segmented structures by determining the
proportion of subjects assigned to the related anatomic label at
each voxel position in the standard coordinate system. The suc-
cess of a probabilistic brain atlas is reliant upon the generality
and reliability of the statistical samples and methods that are

used in its construction [56]. Such criteria have been included in
the development of the atlas of the International Consortium of
Brain Mapping (ICBM) [28], [39]. The maximum probability
anatomical brain atlas in [57] and diffeomorphic probabilistic
brain atlas in [58] constitute some of the new efforts in this field.
A technique for probabilistic unbiased atlas generation based on
a variational intersubject registration framework has also been
developed in [59].

D. Deformable Atlases

A deformable brain atlas can be elastically transformed into
the anatomy of individual brains using a nonrigid registration
technique [27], [60], [61]. They can also be used in joint
registration and segmentation [62], [63], thus providing an
automatic basis for anatomical and functional localization and
labeling. The level of accuracy of this brain mapping process
and further use of the atlas in functional and anatomical labeling
are extremely dependent on the registration technique or on
how well the atlas structures can be matched to the individual
anatomy. Methods comparing probabilistic information on
brain structures from different groups of subjects reveal that
most of the anatomical variability in a normal brain is in the cor-
tical surface and in sulcal and gyral patterns rather than in deep
brain structures [1], [64]. As a result, brain atlases and brain
templates with identifiable cortical structures, including the
important sulci and gyri, have proven helpful in neuroscience
studies [27], [65]–[67]. Due to the important role of cortical
surface structures in functional brain mapping, the develop-
ment of surface-based brain atlases has also attracted much
attention in recent years [68], [69]. The most comprehensive
work on this topic has been done in [70] in the development of
Population-Average Landmark and Surface-based (PALS) atlas
of human cerebral cortex. The PALS-B12 is a surface-based
population-average atlas of 12 normal young adults, which
incorporates advanced hybrid intensity- and feature-based
volume and surface nonrigid registration techniques. Intersub-
ject volume registration and cortical surface registration are
considered in Section IV.

It should be mentioned that in some diseases, such as
Alzheimer’s disease, remarkable differences are observed in
deep brain structures between patients and normal subjects
[27], [71]. In other dementias and in some psychiatric disorders,
subtle abnormalities in the size and overall shape of the brain
are discovered [72]. The statistics of deformation fields and
gradient maps of the atlas transformations can be used to char-
acterize the differences between diseased and normal brains for
such cases. The use of deformable probabilistic brain atlases for
anatomical abnormalities has been considered in [73] and [74].
High-dimensional volumetric nonrigid registration based on
continuum mechanics and cortical surface registration has been
utilized in the construction of these atlases. A similar study [75]
has been conducted on anatomical changes in Parkinsonian
patients. Analysis of functional information and comparison
between the two groups is subtle and highly dependent on the
accuracy of matching the brains to the deformable atlas. Dis-
ease-specific atlas construction is another approach for studying
the differences between diseased and normal populations [27],
[76]. Characterizing the structural and anatomical differences
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Fig. 4. MNI/ICBM152 standard average brain templates are obtained from the
SPM2 template library, (a) T1-Weighted MRI, (b) EPI, and (c) PET templates.

is an ongoing research focus in clinical applications, although
its effects on functional medical imaging have not been fully
explored. Since functional information is usually mapped to the
anatomy, the anatomical variability between groups of normal
and diseased subjects may affect the accuracy of functional
differentiation between the two groups.

E. MNI/ICBM Brain Templates

Brain templates can be regarded as a subclass of brain at-
lases which are normally used as references for mapping dif-
ferent brains in a group analysis study. The choice of a brain
template in a group analysis study affects the outcome of statis-
tical parametric mapping and consequently affects the localiza-
tion of functional maps [77]. In some studies one of the brains is
simply chosen to serve as the template. However, a template that
statistically shows the average of the brains seems to be a better
choice [78]. The simplest form of this kind of template, obtained
via averaging the images that are premapped to a standard co-
ordinate system, is called an average brain template. Normally
the images used in constructing a brain template are spatially
normalized to the Talairach standard coordinates, so most of the
brain templates are originally in the standard coordinate system.

In a series of studies, the MNI created a brain template called
MNI305 that was based on averaging a relatively large number
of normal MRI brain images [37]. This template was created in
a two-stage process. First, 241 brain images were registered to
the Talairach coordinates and their average was calculated as the
first-pass image. Then, 305 normal MRI scans were linearly nor-
malized to the first-pass image and their average was computed
to obtain the MNI305 template. The ICBM adopted a standard
MNI template named ICBM152 by registering 152 normal brain
scans to the MNI305 template [39] using a nine-parameter affine
transformation. This template has been incorporated into sev-
eral commonly used functional image analysis software pack-
ages such as AFNI, SPM and FSL. Fig. 4 shows the templates
of three different modalities, T1-weighted anatomical MRI, fast
fMRI EPI, and PET.

Although in many studies the group analysis is done through
the registration of brain images to MNI templates, the results are
usually reported in the Talairach coordinate system. The MNI

template is designed on the basis of the Talairach standard co-
ordinates, but due to the limited power of the Talairach piece-
wise transformation in compensating the anatomical variability
in different brains and the template construction procedure, the
corresponding points in the template and atlas spaces do not ex-
actly appear at the same location [1], [79]. The extremes of mis-
alignments when overlaying the two standard spaces are in the
temporal lobes of the MNI template, which extend about 10 mm
below the temporal lobes of the Talairach brain [1]. A simple
translation formula has been suggested in [1] to map the MNI
coordinates into the Talairach space. In a more recent study, an
affine transformation has been used to improve the agreement of
the two coordinate systems for deep brain structures [80]. The
mis-localizations that may occur due to the differences between
the MNI and Talairach spaces, their related transformations, and
the interpretation of the results have been discussed in [81].

III. FUNCTIONAL-TO-ANATOMICAL REGISTRATION

The registration of functional-to-anatomical brain images
is the main part of the functional localization procedure. The
early registration techniques were developed for functional
PET/SPECT to anatomical CT/MRI registration and are re-
ferred to as multimodality registration techniques. Due to
the different sources of contrast and intensity values, fMRI
to anatomical MRI registration poses similar challenges, and
many of the prior multimodality registration techniques have
been utilized on this relatively newer problem. T1-weighted,

-weighted, and Proton Density (PD) MR images have
been the benchmarks in many of the recent investigations on
multimodality image registration.

A. Correspondence Basis

Finding correspondences between the functional and
anatomical images is the most important and challenging part
of a multimodality registration procedure. Although an exact
one-to-one correspondence exists between the functional and
anatomical images of a subject, usually these correspondences
are not visible in both modalities. Typically, the spatial resolu-
tion, signal-to-noise ratio, and contrast in functional images are
less than those in anatomic images; hence the brain structures
are quite vague in fMRI and even more so in PET and SPECT
images. Fig. 5 shows typical slices of anatomical and functional
MR images of a subject obtained in one scanning session.

At the highest level of classification, the correspondences
can be established either extrinsically or intrinsically. Ex-
trinsic methods are based on artificial fiduciary markers that
are attached to the skull and are visible in both functional
and anatomical imaging modalities. Image registration using
extrinsic markers is usually fast and straightforward, but has
major drawbacks such as the preparation needed before the
acquisition and the limited applicability to low-dimensional
registration problems. Some extrinsic methods, such as the
stereotaxic frame screwed rigidly into the patient’s head table
in neurosurgery planning, also produce additional artifacts
and image distortions in the types of scans commonly used
for fMRI. Nonetheless, these methods have provided a useful
benchmark for the evaluation and validation of multimodality
registration techniques, which is discussed in Section III-E.
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Fig. 5. Two coronal view slices of typical (a) anatomical and (b) functional MRI
brain scans of a subject taken in one scanning session. Contrast in anatomical
MRI reflects tissue type while in fMRI Blood Oxygenation Level Dependent
(BOLD) level.

The intrinsic methods of finding correspondences between
functional and anatomical images can be classified as fea-
ture-based methods and intensity-based methods. Feature-based
methods rely on automatic feature extraction or segmentation,
or manual or semi-automatic landmark detection, in the source
and target images. The registration problem is formulated as
matching these features or landmarks or minimizing a distance
measure between them. Many of the early registration tech-
niques were developed based on feature-based correspondences
between multimodality images. Among the most popular fea-
ture-based registration techniques, the “head-and-hat” technique
[82], [83], the “Chamfer matching” technique [84], and the it-
erative closest point (ICP) algorithm [85] are noteworthy. The
“head-and-hat” technique is based on the segmentation of the
skin surface from CT, MRI, and PET images and because of its
simplicity and relatively low computational complexity it has
been considered quite practical in PET to MRI registration. The
chamfer matching technique uses a distance transform based
on structural segmentations in the images. An extension of
these registration techniques is the surface-based registration
technique presented in [86]. The major drawback of the seg-
mentation-based techniques is that the registration accuracy is
limited by the segmentation accuracy.

The ICP algorithm, on the other hand, relies on the detection
of surface and point landmarks and an iterative minimization of
landmark distances. A major drawback with the landmark-based
registration techniques is that normally the landmark detection
step has to be done via user interaction. In essence, the extrac-
tion of anatomical feature correspondences, landmarks or seg-
mentation-based features from functional brain images is very
difficult and inaccurate. Therefore, only a few of the early fea-
ture-based registration techniques have been applied to the reg-
istration of functional-to-anatomical brain images. For example,
the performance of feature-based registration techniques based
on edge and ridge detection using Derivative of Gaussian (DoG)
filters and scale space has been considered in several articles
[87]–[89]. Another technique for the registration of functional

PET to anatomical MR images using point, line and plane fea-
tures has appeared in [90]. For a complete review and classi-
fication of the earlier feature-based registration techniques, the
reader is referred to the survey paper by Maintz and Viergever
[21]. There are very few recent papers on the utilization of land-
mark or feature detection techniques for multimodality brain
image registration [91], [92]. Typically, these techniques have
been tested on anatomical images and have not been used for
functional-to-anatomical registration. In a hybrid intensity- and
feature-based approach, the use of morphological tools has been
proposed in [93] to extract surface and edge features and incor-
porate them into a cross-correlation intensity-based registration.

Intensity-based methods are based on intensity similarity
measures between two images [94]. The basic methods utilize
absolute or sum-of-square intensity differences [7], cross-cor-
relation of intensity values [95], or variance of intensity ratios
[96]. In contrast to the feature-based registration methods that
use a relatively sparse set of processed and extracted infor-
mation from the images, the intensity-based techniques can
typically use all the available image information. Joint his-
tograms of the source and target images have been considered
as a basis for measuring intensity correspondences. The joint
histogram of two images is more dispersed when the images are
not in alignment. Research on quantifying the joint histogram
of two brain images [96], [97] was redirected to use similarity
measures based upon information theory, i.e., the concept of
entropy and joint entropy of images [98], which resulted in the
introduction of mutual information (MI) as a generally appli-
cable similarity measure. Image registration via maximization
of MI was introduced by two independent groups: Collignon
and Maes et al. [99], [100] and Viola and Wells [101], [102].

MI is a measure of statistical dependence between two
random variables or the amount of information one variable
contains about the other. The MI of two images describes the
amount of information in the joint histogram of the images;
hence its maximization results in the best match of intensity
correspondences between the images for registration. In the
early follow-up studies, normalized formulations of MI were
introduced in [100] and [103]. These two normalized measures
are referred to as normalized mutual information (NMI) and
entropy correlation coefficient (ECC). Many studies carried
out on the use of MI and NMI in different medical image
registration applications indicate that MI is regarded as the
de-facto standard in multimodality image registration. For a
more complete review of the broad range of the articles on
MI-based medical image registration, the reader is referred to
the review papers by Pluim et al. [17] and Maes et al. [18].

Despite the wide use of MI in medical image registration,
there have been a few cases in which other similarity measures
have shown to be more robust. These cases typically occur in
applications with images of lower signal-to-noise ratio, such as
ultrasound images. Correlation Ratio (CR) was introduced as
another multimodality similarity measure in [104], and its per-
formance was compared to MI for registration of ultrasound to
MRI images [105], [106]. General formulas for the use of local
and global correlation coefficient of intensity values (CC), CR,
and MI similarity measures in multimodality nonrigid registra-
tion have been developed in a variational framework in [107].
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In [108], it has been shown that all of the intensity similarity
measures perform satisfactorily in the rigid registration of sim-
ulated SPECT to real MRI images. A protocol for the evaluation
of nine similarity measures for rigid registration of SPECT, PET
and MR images has shown the superiority of the measures based
on information theory, e.g., MI and NMI [109]. The effect of im-
plementation parameters on the accuracy of registration using
different similarity measures has also been considered in this
study.

Using simulated images, the deficiencies of MI in capturing
some obvious image features has been shown in [110], and local
phase information measure has been introduced to address those
deficiencies. Phase information measure is inherently a feature-
based correspondence measure based on frequency filtering, and
has shown to be more robust than MI in extremely noisy cases
such as the registration of ultrasound to MRI [111]. However, a
practical case more relevant to the topic of this survey, i.e., func-
tional-to-anatomical brain image registration, is the problem of
image outliers. Image outliers may be present between the mul-
timodality images due to incomplete data acquisition, different
Fields Of View (FOV), lesion evolution, or neurosurgery; and
can potentially affect the accuracy of registration techniques.
This problem was addressed in an early comparison of inten-
sity-based similarity measures [112]. In a more recent track of
work, local frequency maps have been proposed to overcome
the problems that may occur due to the different FOV or image
outliers [113], [114]. The robustness of this technique has been
compared with that of MI-based registration technique in [115].
Local frequency maps are obtained in the frequency domain
based on Gabor filtering and phase gradient.

In [116] a more general concept of similarity has been in-
troduced based on point similarity measures. Point similarity
measures provide a general basis for relative comparison of
local image correspondences. Information-theory-based simi-
larity measures including MI can also be regarded as point sim-
ilarity measures, and it is also possible to incorporate segmen-
tation information and feature correspondences as part of these
measures.

The majority of recent publications on correspondence basis
are within the class of multimodality intensity-based similarity
measures and specifically rely on information theory. These
techniques can be classified into three groups: 1) methods
that improve the computational accuracy and efficiency of
joint histogram and joint entropy estimation; 2) methods that
incorporate spatial information into MI; 3) methods that utilize
more generalized measures from information theory.

1) The joint and marginal histograms of multimodality im-
ages have nonuniform and fuzzy shapes and a uniform
histogram binning cannot adequately represent their
characteristics and, thus, the computational accuracy of
intensity similarity measures such as MI are adversely
affected. Improvements have been realized through
adaptive histogram binning [117], K-means clustering
histogram binning [118], [119], and robust Maximum A
Posteriori (MAP) estimation of joint histograms [120].

2) In practice, a major drawback of MI, based on the
Shannon entropy, is that it ignores the spatial in-
formation and dependence of the gray values of the

neighboring voxels in an image. Several methods have
been proposed to incorporate such spatial information
into the MI similarity measure, for example Jumarie
entropy [121]. A combination of gradient information
and MI has been examined in [122]. The concept of
second-order MI has been developed [123] based on the
co-occurrence matrices of the neighboring voxel inten-
sities. Most of the more recent studies, such as the use
of spatial feature vectors [124], multifeature MI [125],
and regional MI [126], are based on higher dimensional
histograms. In another extension, the multidimensional
MI has been proposed for the simultaneous registration
of multiple multimodality images [127]. The maximum
distance gradient magnitude (MDGM) method [128]
utilizes a two-element attribute vector of MI and spatial
feature information in computing a multidimensional
MI similarity measure. In contrast to the techniques
which rely on derivatives for incorporating spatial fea-
ture information, to improve the noise robustness, the
so called quantitative-qualitative measure of MI (Q-MI)
has been developed in [129] utilizing the regional
saliency values computed from the scale space maps of
the images.

3) f-information measures are a general class of measures
in information theory that can be used in quantifying
the divergence of probability density functions (PDFs)
as models of joint histogram of images. A comprehen-
sive study, statistical analysis and comparison of the per-
formance of various f-information measures in regis-
tering PET, CT and MR brain images has been carried
out in [130], concluding that several measures can po-
tentially provide significantly more accurate results than
MI. Kullback-Leibler distance (KLD) is one of the mea-
sures based on information theory that has been used
in some of the recent multimodality registration studies
[131]–[135]. KLD provides learning capability and in-
corporation of prior information in multimodality image
registration.

B. Transformation Model

Since the brain is constrained in the skull and the functional
and anatomical brain images are normally acquired at a min-
imal time interval, thus limiting the possible long-term brain
changes, the assumption that a rigid transformation is sufficient
to register the images is in general fairly accurate. As a result,
the majority of the multimodality registration studies simply
assign a rigid transformation to the registration framework
[87], [88], [90]–[93], [96], [100]–[103], [106], [108], [109],
[111], [112], [114], [117]–[119], [123], [124], [126], [129],
[131]–[133], [135]–[148]. A rigid transformation consists of
three translation and three rotation parameters in the 3-D space
providing a six degree of freedom model that is estimated
through the registration algorithm. Sometimes three scale
parameters are also added to the rigid transformation. Such a
nine-parameter transformation is in fact an affine transforma-
tion and seems to serve as an appropriate practical model for
the registration of most functional-to-anatomical brain images
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Fig. 6. Coronal and sagittal slices of typical (a) anatomical and (b) functional
MRI brain scans of a subject taken in one scanning session. The effect of non-
rigid distortions and signal loss artifacts near the bony tissues of sinuses is
marked by crosshairs.

[114], [127], [149]. In its complete form, an affine transfor-
mation can also contain three shearing parameters, yielding
a transformation with 12 degrees of freedom. The rigid and
affine transformations can be fully modeled as 4 4 matrices
of translation, rotation, scale, and shear. A tutorial on rigid and
affine transformations has been provided in [150].

In practice, the most realistic reason for using transformations
with high degrees of freedom for functional-to-anatomical brain
image registration is the presence of local nonrigid geometric
distortions in fast functional imaging. The fMRI echo planar
images (EPIs) are typically distorted by severe geometric dis-
tortions due to eddy current effects, field inhomogeneity and
susceptibility artifacts, as well as dephasing effects leading to
signal loss and misplacement of intensities [151], [152]. Fig. 6
exemplifies the signal loss and distortion artifacts in a typical
EPI scan.

There has been a considerable amount of research on the
prospective or retrospective physical correction and compen-
sation of these distortion and signal misplacement artifacts.
Discussion of these techniques is beyond the scope of this
survey paper, while it is noted that these techniques cannot
completely correct the effect of nonlinear distortion artifacts
and nonrigid registration can be effective in reducing the local
mis-registrations caused between functional and anatomical
images. A few studies have relied on affine transformation for
distortion correction via registration of EPI to an anatomical
image [153], [154], while most of the others have utilized
high-dimensional nonrigid transformations [155]–[162]. The
transformation models that have been used in these studies
include unidirectional B-spline basis functions [156], Optical
flow (OF) model [107], [155], [159], [160], and free form
deformation (FFD) with regular grid of control points [157],
[158], [161], [162]. Nonrigid transformation models have also
been used in more general multimodality brain image registra-
tion studies, e.g., [116] and [163]–[168]. A detailed description
and classification of the nonrigid transformation models is
presented in Section IV-B.

One of the most important challenges in the development
of nonrigid registration techniques for functional-to-anatom-
ical brain image registration is the definition of appropriate
constraints to avoid excessive deformations. Regularization
methods, smoothness and diffeomorphic constraints have
been widely studied in the development of intersubject non-
rigid registration techniques [6] and are discussed in detail
in Section IV-B. These methods have also been used in the
above-mentioned studies on registration of functional EPI to
anatomical MRI; e.g., [155]–[158]. Other researchers have
investigated geometric constraints utilizing physical analysis
of distortion effects in EPI [157], [162]. Based on the analysis
of Spin Echo (SE) EPI, a logarithmic Jacobian correction
term has been incorporated into the optimization procedure
in [157]. A similar analysis has been performed in [162] for
gradient echo EPI, where a Jacobian correction term along
with a dephasing factor was incorporated into the optimization
framework. It should be noted that elastic regularization does
not necessarily need to comply with physical elastic properties
of the imaging material, especially pertinent in cases such as
EPI sequences used in fMRI, where the localized distortions
arise from artifacts in the imaging methods rather than changes
or differences in anatomy.

C. Optimization

The core of a registration algorithm is an optimization frame-
work involving a search of those parameters of the transfor-
mation model that minimizes a cost function. The cost func-
tion is normally defined as a function of correspondences or
similarity between the source and target images, and may also
contain explicit regularization terms for smoothness and diffeo-
morphic constraints to preserve topology. In some feature-based
registration algorithms, for example point matching on a set of
point correspondences, a direct optimization technique such as
the minimum norm solution can be used. In more complex sit-
uations, iterative optimization techniques are used, for example
Powell’s method, downhill simplex, gradient descent, conjugate
gradient, quasi-Newton, Levenberg-Marquardt, genetic (evolu-
tionary) algorithm, or simulated annealing.

Due to the nonoptimality of feature and intensity similarity
measures and the corresponding cost functions, the solution of
the registration problem is frequently not considered to be the
global optimum. Additionally, global optimization techniques
such as evolutionary algorithms and simulated annealing are
characterized by quite slow convergence rates and have been
used only rarely in medical image registration. On the other
hand, multiresolution and multiscale optimization frameworks
have shown to be effective in obtaining a faster and more ro-
bust convergence toward the solution [136]–[138]. Maes et al.
[136] compared various multiresolution gradient and nongra-
dient based optimization techniques such as Powell, simplex,
steepest descent, conjugate gradient, quasi-Newton, and Leven-
berg-Marquardt methods, and obtained a speed-up by a factor
of 3 in a two-level multiresolution formulation of conjugate gra-
dient and Levenberg-Marquardt methods for affine registration
of CT and MRI images.

Most of the widely used optimization algorithms, including
gradient descent, quasi-Newton and Levenberg-Marquardt,
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require derivative calculation. While it is possible to numeri-
cally estimate the derivative of a cost function with respect to
the transformation parameters via computing local variations,
analytical expressions for the gradient of similarity measures
have shown to be effective in speeding-up the calculation
and achieving a smoother and more robust optimization. The
gradient expressions for CR, CC, and MI similarity measures
have been computed based on a variational formulation in
[107]. Several groups have investigated analytical methods for
the computation of the gradient of MI. Viola and Wells [101],
[102] used a mixture of Gaussian distributions and Parzen
window estimation to model the PDF distributions and derived
analytical expressions for stochastic approximation of MI and
its derivative. Maes et al. [136] computed exact expressions for
the gradient of joint entropy and MI based on partial volume
interpolation; and Thevenaz and Unser [138] introduced a
rather fast optimization algorithm based on the computation of
the gradient of MI using smooth Parzen window modeling of
PDF distributions by cubic B-spline functions.

D. Interpolation

Interpolation is used within each iteration of the registration
algorithm to resample the transformed source image to the phys-
ical space of the target image. As a general concept of image
resampling, interpolation reconstructs a continuous image from
its discrete samples. When the Nyquist criterion is satisfied as
per the sampling theory [169], the continuous image can be per-
fectly reconstructed by the ideal interpolation kernel which is
the sinc function corresponding to a low-pass rectangular filter
in the Fourier domain. Nevertheless, sinc interpolation is im-
practical due to the infinite kernel width and signal band-lim-
itedness assumption. In practice, windowed sinc functions can
be used but there are also many other kernels with appropriate
characteristics for interpolation.

The common interpolation kernels are symmetric and ful-
fill the separability property; thus, a 1-D kernel can be applied
sequentially in the three dimensions of the image. While the
nearest-neighbor interpolation is the simplest technique, the tri-
linear, quadratic and cubic B-spline kernels seem to be the most
popular in registration applications. In essence, the choice of
an interpolation kernel between linear interpolation and higher
order spline interpolation kernels involves a tradeoff between
speed and accuracy. Interpolation methods and their impact on
medical image processing have been discussed in several tuto-
rial articles by Meijering [170], Meijering et al. [171], Lehman
et al. [172], and Thevenaz et al. [173].

In a series of investigations of the specific effects of interpo-
lation on multimodality registration, it has been observed that
linear interpolation or higher order interpolation techniques may
introduce new intensity values leading to unpredictable changes
in the marginal PDF estimation [99], [174]. Partial Volume (PV)
interpolation has been introduced [99] to solve this problem. PV
interpolation results in a continuous and differentiable registra-
tion criterion. The effect of interpolation artifacts on the accu-
racy of MI estimation has been addressed in [174], and has been
further considered through the introduction of generalized par-
tial volume interpolation in [175], [176] and sinc approximating
kernels in [177].

E. Validation

Validation is necessary to guarantee the fidelity and useful-
ness of registration techniques, and includes considerations
such as accuracy, robustness, consistency, reliability, resource
requirements, computational complexity, and impact [178],
[179]. Accuracy and robustness are the first issues that need
to be verified in any investigation. Reliability is the correct
performance of the algorithms for a reasonable range of
data, and highly depends on the accuracy, robustness, and
consistency of the techniques for real datasets. Validation of
functional-to-anatomical image registration suffers from the
problems associated with finding appropriate correspondences
between images of different modalities. The most promising
similarity measures that are currently used in multimodality
image registration operate in the intensity domain and not in
the spatial domain, thus, they do not provide useful informa-
tion about the correctness of registration, the magnitude of
registration errors, and the spatial distribution of errors [180].
Therefore, independent quantitative and qualitative assessments
of registration fidelity are essential to prove the usefulness of
any multimodality image registration algorithm.

Quantitative validation of registration accuracy is only pos-
sible if a ground truth is available. Extrinsic markers also re-
ferred to as fiducial markers, have been regarded as the ear-
liest tools in providing the ground truth [96], [143], [144]. Ex-
trinsic markers are either invasively placed by neurosurgery,
or are attached to the skin surface, scalp or skull frames, and
are typically far from the internal brain structures; but provide
quite accurate gold standards for the evaluation and validation
of rigid and affine registration. Fitzpatrick et al. [145] conducted
a project called “Retrospective Registration Evaluation Project”
(RREP) and provided a common evaluation framework based on
gold standard PET, CT, and MR images of nine patients under-
going neurosurgery. Fiducial markers visible in all modalities
were attached to the stereotaxic frames on each patient and were
manually removed from the images to ensure the blindness of
the evaluation and validation studies. Results of the first com-
parison of the registration results submitted by 12 participant
groups were published by West et al. in 1997 [181]. The results
were compared according to the median and maximum of the
Fiducial Registration Error (FRE) for each technique, computed
on 10 volumes of interest on the images of all nine patients. The
interslice distance in the RREP database of this study was 4 mm
for the MR images and 8 mm for the PET images. Considering
both median and maximum FRE measures, the intensity-based
registration techniques of Collignon and Maes et al. [98], Hill et
al. [97], and Woods et al. [96] provided subvoxel accuracy in the
registration of PET to MR images. Considering maximum FRE
measure, the chamfer matching method of Jiang et al. [182] and
considering median FRE measure, the head-and-hat technique
of Pelizzari et al. [82], [83] provided comparable results.

Based on FRE measures in the RREP framework, West et al.
[140] compared the performance of eight surface-based (fea-
ture-based) and six volume-based (intensity-based) registration
techniques and concluded that the volume-based techniques
were significantly more accurate than surface-based techniques
in CT to anatomic MRI registration and were also slightly
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more accurate in PET to anatomic MRI registration. In the
same study, they also performed a statistical hypothesis test on
the differences between the results obtained from MR images
corrected and uncorrected for field inhomogeneity, and did
not find the difference significant for PET to anatomic MRI
registration. A comparison of these results along with some of
newer studies has also been presented in [21]. While the slice
thickness was rather high in the original RREP study, a second
series of nine patient datasets with PET, CT, T1-weighted,

-weighted, and PD MR images have later been added to the
project, and the database has been used as a gold-standard in the
evaluation and validation of many multimodality brain image
registration studies, for example [91]–[93], [103], [117]–[119],
[125], [130], [136], [137], [139], [145], [146], and [149]. The
major drawback of validation strategies based upon extrinsic
markers is that the markers are spatially sparse, and far from
the interior brain structures and, thus, do not provide the local
resolution and accuracy that is needed in the validation of non-
rigid registration techniques. Only rigid registration techniques
have been validated using the RREP database.

An alternative to validation of registration based on extrinsic
markers is validation with brain phantoms that are considered
to serve as gold standards. Physical phantoms have been used
in [157] and [160] to validate nonrigid registration of EPI to
T1-weighted anatomical MRI, and in [106] to validate ultra-
sound to MRI registration. Physical phantoms can provide mul-
timodality contrast and realistic motion, distortion and imaging
issues [157]; however, similar to in-vivo human brain images,
they normally suffer from the lack of quantitative registration
validity measures [183]. Moreover, they cannot be easily de-
formed in a controlled manner. Digital brain phantoms, on the
other hand, are more flexible and have been widely used in re-
cent studies. However, the construction of accurate and realistic
digital brain phantoms is a complicated task. An accurate dig-
ital brain phantom called BrainWeb has been developed at the
McConnell Brain Imaging Center of the MNI at McGill Uni-
versity [184], [185] and has been widely used in validation. An
MRI simulator in BrainWeb uses the Bloch equations to im-
plement a discrete event simulation of NMR signal for more
than 10 parameterized tissue classes and realistically models
the MRI noise and partial volume effects. The simulator pro-
vides gold standard T1-weighted, -weighted, and PD-MRI
synthetic images with different parameters, for normal and Mul-
tiple Sclerosis (MS) lesion brains. The BrainWeb database has
been used in the validation of various rigid (e.g., [111], [114],
[119], [127]–[129], [131], [135], and [147]) and nonrigid (e.g.,
[105], [110], [115], [134], [155], [158], [164], [166], and [168])
multimodality registration techniques. By applying simulated
and synthetic motion and distortion to the gold standard images
in these studies, ground truth measures have been defined and
the accuracy of registration techniques has been quantified. PET
and SPECT simulations have also been used in several studies,
e.g., [141], [142], [108], and [186].

Some researchers have used images that were manually
aligned by clinical experts as gold standards [113], [132].
Cross-validation and comparison of two techniques has been
done in a few studies [87], [112], [148]. In many of these cases,
the computational complexity of the algorithms has also been

addressed through the validation procedure. Consistency tests
using Monte Carlo simulations have been done in [147] on the
images obtained from BrainWeb database, and in [108] on three
registrations between interictal and ictal SPECT images and
MRI. Consistency tests have also been done on the registration
of a time series of functional images to an anatomical image
in [154]. Robustness to different implementation issues such
as the interpolation and optimization methods has also been
considered as part of validation in the development of registra-
tion techniques, for example in [100] such an analysis has been
done using the RREP database.

It should be noted that either most of the quantitative vali-
dation measures are not directly applicable to real images for
local precision evaluation, or the assessments are not readily
transferable from in-vitro to in-vivo data. Hence, qualitative
assessment of registration fidelity through visual inspection
is also useful. Qualitative assessment of registration accuracy
has been done mostly through simple visualization techniques
incorporating segmented edges and contours or checkerboard
alignment of images through visual inspection [87], [88], [90],
[96], [102], [107], [112], [131], [132], [134], [141], [149],
[153], [155], [156], [160], [165], [166], [168]. It is often useful
for registration results for real data to be cross-validated by
comparing the accuracy of registration judged by expert ob-
servers with other evaluation criteria. For example, in [145] the
fidelity of expert evaluation of registration accuracy was statisti-
cally validated by comparison with an external fiduciary marker
method for gold standard CT and MR images. The images were
obtained from five patients undergoing neurosurgery with four
extrinsic markers implanted in the skull frame. The experts’
visual assessments were accurate within 2 mm, whereas 0.5
mm accuracy of gold standard registration was estimated by
the fiducial marker. Although qualitative validation has been
used also as part of in-vivo validation of nonrigid registration
techniques, it cannot be considered as an appropriate technique
unless supported by additional validation strategies.

From a more practical viewpoint, the validation of nonrigid
registration of functional EPI to anatomical MRI images has
been much more challenging due to the need for local perfor-
mance measures. Attachment of extrinsic markers and detection
of intrinsic landmarks are difficult and, more importantly, they
do not provide the desired local resolution for validation.
Quantitative evaluation measures for images obtained from
physical phantoms often suffer from the difficulty of providing
adequately realistic details to properly simulate the appearance
of the brain in real images. For currently available digital brain
phantoms, there is not yet an appropriate simulation of EPI
intensity, contrast, noise, signal loss, and distortion artifacts.
The practical papers that have addressed the problem of fMRI
EPI-to-anatomical MRI registration have typically relied on ad-
ditional validation strategies. The technique in [153] has shown
to be able to correct the effect of intentionally mis-adjusted
shimming in EPI. Comparison of the transformation deforma-
tion fields to real field map acquisitions has been used in [157]
and [162]. Qualitative validation based on the ultimate goal of
registration, the postanalysis of the location of activation maps,
has been presented in several studies, such as [157], [158], and
[187].
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IV. INTERSUBJECT REGISTRATION

Oftentimes, normal or pathological aspects of brain func-
tion can only be identified through the analysis of functional
imaging data from a group of normal and/or diseased subjects
[188]–[190]. The variability of brain anatomy between different
subjects is a major problem in analyzing a group of functional
images, and is arguably the most important challenge in func-
tional localization [1], [3]. This variability not only affects the
accuracy and reliability of statistical analysis but also creates
serious problems in activation labeling and in reporting and
comparing the results of different studies.

Because the anatomical variability is highly nonlinear, an ac-
curate mapping between different brains and between different
brains and brain atlases or templates is only possible through
nonrigid transformations. The nonrigid brain warping tech-
niques [6] have flexibility beyond the simple rigid and affine
registrations. In practice, to perform intersubject registration,
all of the brain images are registered to a standard brain atlas or
brain template. This procedure is called spatial normalization
[7], [191]. From an algorithmic viewpoint, brain warping
techniques can be categorized as either volume registration
techniques or surface registration techniques. Volume registra-
tion attempts to match the size and shape of different brains
with each other or to warp them into a standard brain template,
usually based upon voxel intensity values or anatomical fea-
tures, utilizing internal landmarks as well as surface boundaries.
Surface registration utilizes the layered structure of the sulcal
and gyral structures on the cortical surface, which divides the
brain into separate cytoarchitectural and anatomical regions,
to guide the registration process. The spatial normalization
techniques are listed in Section IV-A, detailed classification
of transformation models and registration techniques are dis-
cussed in Section IV-B followed by a discussion on validation
of intersubject registration in Section IV-C. Cortical surface
registration techniques are discussed in Section IV-D.

A. Spatial Normalization

The simplest practical form of spatial normalization is the
piecewise linear Talairach transformation which has been dis-
cussed in Section II-A. Because the Talairach coordinate system
has been widely used and is generally accepted as the stan-
dard stereotaxic reference, it is normally used for postanalysis
activation labeling, and the Talairach transformation has been
used in many group-analysis studies. Nevertheless, after Ta-
lairach registration, differences on the order of centimeters may
be observed between the anatomical landmarks detected in the
spatially normalized brains [192]. The fact that the low-dimen-
sional Talairach transformation cannot adequately deal with the
anatomical variability in different brains has been the motivation
for developing higher dimensional spatial normalization tech-
niques. Even other low-dimensional warping techniques, such
as polynomial warping [193], have been shown to be more accu-
rate than the Talairach transformation for intersubject anatom-
ical landmark matching [194]. The other drawback of the Ta-
lairach transformation is that it is based on manual selection of
landmark anatomic reference points.

The accuracy of spatial normalization along with the resolu-
tion and signal-to-noise ratio (SNR) of the original functional

images define the accuracy of the functional analysis and func-
tional localization. Spatial normalization techniques can signif-
icantly affect the results of statistical functional image analyses
such as statistical parametric mapping [190], [195]. As an ex-
ample, in a recent study on somatosensory and auditory ac-
tivation in the parasylvian cortex [189], it has been observed
that activation maps may be detected on the wrong side of the
sylvian fissure due to the possible inaccuracies in spatial nor-
malization. Although brain templates of all functional imaging
modalities, such as PET, SPECT and fMRI, are available and
also can be created specific to a study, the advanced spatial nor-
malization techniques are more accurate if applied to high-res-
olution anatomical MRI scans. These techniques typically rely
on both intensity and feature correspondences that are better de-
fined on high-resolution anatomical images. In some suggested
procedures, accurate functional-to-anatomical registration is ap-
plied to the images of each subject. Then, the high-resolution
anatomical images of all subjects are spatially normalized to
a high-resolution brain atlas or brain template, and finally the
transformations used in the spatial normalization of anatomical
images are applied to the functional images [77]. Most of the
newer developments are towards the use of spatial normaliza-
tion in the high-resolution anatomical space of brain images.

Table I lists some of the widely used spatial normalization
techniques. These techniques include: 1) the Talairach transfor-
mation [25]; 2) the polynomial warps (PW) method of Woods
et al. [193]; 3) the harmonic basis function technique of the
SPM software package by Ashburner and Friston [196]; 4) the
demons algorithm by Thirion [197]; 5) Automatic Nonlinear
Image Matching and Anatomical Labeling (ANIMAL) by
Collins and Evans [198], [199]; 6) Large deformation fluid
diffeomorphisms (LDFD) by Miller, Joshi and Christensen
[200]; 7) elastic techniques based on Navier-Stokes continuum
mechanics by Gee and Bajcy (NSCM) [201]; 8) the inverse
consistent elastic registration (ICER) by Christensen and
Johnson [202]; 9) the B-spline FFD model nonrigid regis-
tration by Rueckert et al. [203]; 10) the robust optical flow
(ROF) technique of Hellier et al. [204]; 11) Octree Spatial
Normalization (OSN) by Kochunov et al. [205], [206]; 12)
HAMMER (Hierarchical Attribute Matching Mechanism for
Elastic Registration) by Shen and Davatzikos [207]; 13) RPM
(Robust Point Matching) by Chui et al. [208], [209]; 14) the
iconic feature-based nonrigid registration (PASHA algorithm)
by Cachier et al. [210]. Detailed descriptions of the character-
istics of these techniques are covered in the following section,
along with classification of volume registration techniques
according to the transformation model, correspondence basis,
and regularization methods.

B. Volume Registration

In intrasubject multimodality registration, rigid transforma-
tion and intensity similarity measures based on information
theory have been widely used in most of the applications. In
contrast, the choice of appropriate transformation models and
correspondence bases has been more controversial in volume
registration techniques for spatial normalization. The use of
various nonrigid transformation models and hybrid intensity-
and feature-based correspondences has been explored in many
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TABLE I
SOME OF THE WIDELY USED SPATIAL NORMALIZATION TECHNIQUES AND

THEIR MAIN CHARACTERISTICS

studies. Constraining the deformation fields to be smooth and
physically correct with regularization techniques has also been
a subject of active research.

The simplest transformation that has been used for spatial
normalization in the literature is the affine transformation
[149], [211], [212]. Compared to a rigid transformation with
6 degrees of freedom, which is quite useless in spatial nor-
malization, an affine transformation can approximately match
the size of different brains. A 13-parameter piecewise linear
Talairach transformation [25] has been used in many group
analysis studies as a fundamental part of the functional image
analysis software packages such as AFNI [31]. The drawbacks
of the Talairach transformation as mentioned in Section IV-A
are its limited accuracy in matching the brain structures and
its semi-manual characteristic. Online and offline procedures
for Talairach registration have been presented in [46], and an
automatic Talairach registration technique has been developed
in [213]. The technique developed in [213] uses mid-sagittal
plane extraction and shape matching for corpus callosum to
automatically detect seven of the eight (AC, PC, plus front
and back, top and bottom, and left and right extents) Talairach
landmark points (all except the most Inferior Point (IP)).
Among the other low-dimensional nonrigid transformations,
the polynomial warping method by Woods et al. [193] and the
harmonic basis functions by Ashburner and Friston [196] have

Fig. 7. MRI scans of two different subjects: position, orientation and field of
view are different between the images. Spatial normalization is needed to bring
different brain anatomies into alignment.

Fig. 8. MRI scans of the subjects in Fig. 7 are spatially normalized to the
MNI/ICBM152 template using the low frequency cosine harmonic basis func-
tion spatial normalization technique in SPM2.

been widely used. Figs. 7 and 8 show T1-weighted MRI scans
of two different subjects before and after spatial normalization
using the volumetric registration method of the SPM software
package [196].

Higher dimensional transformation models can be divided
into two main groups: parametric models and nonparametric
models. Some of the most important high-dimensional para-
metric models include: 1) FFD models with regular grid of
control points, typically based on B-spline basis functions
[51], [203], [214]–[222] or radial basis functions [57], [60],
[77], [223]–[225]; 2) elastic-body spline warping models [226]
such as thin plate spline (TPS) warping models [227]–[229]
mainly used as interpolators for point set matching; 3) local
affine transformations [166], [205], [206], [230]–[232]; 4)
wavelet-mediated deformations [233]. A parametric particle
method based on vector field formulation has also been devel-
oped [234]. On the other hand, the nonparametric models are
based on partial differential equations (PDEs) describing the
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deformation of elastic material under external forces driving
the deformation and internal forces imposing smoothness
constraints. The external forces are computed through the simi-
larity measures, and the internal forces are normally formulated
as cost functions penalizing excessive deformations. The defor-
mation field models are normally described by Navier-Stokes
equations in continuum mechanics [54], [235]–[241] or by
Euler-Lagrange equations in a variational framework [107].
The registration problem is solved numerically using Finite
Element Methods (FEM) [242] or through the calculus of
variations [107]. OF models [204] and the dense deformation
fields of grid points in the Demons algorithm [197] are also
classified as nonparametric models. The Demons algorithm
has also been considered as an approximation of viscous fluid
registration as investigated in [237]. In order to decrease the
computational cost and to improve the local resolution of
nonrigid transformations, several researchers have proposed
adaptive techniques for the selection of control points in FFD
[214], [243], [244] and also in NSCM [245] transformation
models. Adaptation is typically done through the identification
of the mis-registration areas with lower local similarity mea-
sures and/or higher contrast.

Analogous to the correspondence basis classification of func-
tional-to-anatomical registration techniques in Section III-A,
the intersubject volume registration techniques are classified
into intensity-based, feature-based, and hybrid intensity- and
feature-based techniques. Intensity-based correspondences are
based on voxel intensity similarity measures which are either
information-theory-based measures such as MI [50], [52], [59],
[212], [223], [240], [246]; NMI [51], [216], [220], [221]; and
KLD [55], [239], [247]; or based on likelihood functions of
voxel intensities [215], [248] or voxel intensity differences
computed as local or global sum of square differences (SSD)
[58], [77], [149], [197], [233], [249]; mean square differences
(MSD), or weighted MSD [49], [196], [202], [204], [225],
[234], [250].

Feature-based registration techniques rely on geometrical or
structural image features extracted by preprocessing voxel in-
tensity values. Pointset landmark matching has been one of the
most practical techniques, utilized for affine registration [211],
Talairach transformation [213], elastic body spline and TPS
warping [226], [227], and [229], and RPM [208]. Except in two
cases, all of these techniques are based on manually detected
point landmarks. A semi-automatic technique has been investi-
gated in [227], and automatic detection of Talairach points has
been introduced in [213]. Based on detectable substructures in
MRI, a point set matching technique has been developed in [45]
using finite element methods. Another group of feature-based
registration techniques relies on level set motion and shape
models; for example [251] and [238]. The geometric moment
invariant (GMI) attribute vectors introduced in HAMMER
[207] has provided a flexible framework for follow-up studies
[252]–[254]. The attribute vectors include a set of image
features at each voxel and are considered as morphological
signatures of voxels. The incorporation of surface registration
in HAMMER has also been considered in [255] and [256].
Wavelet-based attribute vectors [257], [258] rely upon the
extraction of correspondence features from wavelet subimages.

A more robust registration technique has been achieved via
constraining the deformation field by 3-D statistical model of
deformations (SMD+HAMMER) [259].

The relatively newer spatial normalization techniques based
on OSN and HAMMER have utilized tissue classification and
voxel intensity values, hence they are considered as hybrid fea-
ture- and intensity-based registration techniques. In [241] seg-
mentation and tissue classification has been used to incorporate
voxel class probabilities via MI and KLD formulations in an in-
formation theory framework. Several voxel intensity similarity
measures have been tested in combination with feature corre-
spondences in the OSN and PASHA algorithms. The PASHA
algorithm [210] has been formulated based on the concept of
iconic feature-based registration, which is regarded as a gen-
eral form of a few older registration techniques, inspired by the
Demons algorithm [197], the block matching technique [139],
and the nonlinear ICP [260]. The use of other geometric fea-
tures extracted from sulci models has appeared in a few arti-
cles, e.g., [261] and [262]. There are also a few studies that rely
on hybrid intensity and point set landmark features in registra-
tion [217], [219]. In a more comprehensive framework called the
landmark-initialized inverse consistent linear elastic registration
[263] a hybrid registration technique based on ICER has been
developed. Several correspondence bases have been used in this
registration technique, including manually detected landmarks,
semi-automatic structural segmentation by artificial neural net-
works, tissue classification, and normalized intensity similarity
measures.

Another important aspect of nonrigid registration is regular-
ization. In the most general form of nonrigid registration, each
image voxel has 3 degrees of freedom and can be displaced in
the 3-D space independent of its neighbors. Therefore, the max-
imum number of parameters of a high-dimensional transforma-
tion is three times the number of image voxels. Nevertheless,
independent displacement of all voxels is undesirable since it
may result in physically unrealistic deformations. Regulariza-
tion aims at constraining the solution of nonrigid registration to
achieve physically acceptable and topologically correct smooth
deformation fields. Regularization is inherent in parametric non-
rigid transformation models based on basis function interpola-
tors such as TPS [226], and also B-splines in FFD models [203],
[216]. The elasticity degree of the deformation field is deter-
mined and can be controlled by the number and distribution of
the basis functions which are placed at the position of regular
or irregular control points. In a multiresolution framework, the
number of control points increases from the initial coarse res-
olution level to finer resolutions, thus increasing the elasticity
and accuracy of the transformation model. The elasticity and
resolution of the transformation can also be locally determined
by adaptive selection of control point locations or by adaptive
grid point refinement [223], [244]. Gaussian smoothing of de-
formation field has also been a straightforward regularization
technique for subvolumes, locally affine transformations and
block matching registration techniques [197], [205], [207]. A
few techniques have utilized Gaussian smoothing of deforma-
tion fields, e.g., OSN and HAMMER. Nonstationary diffusion
filter Gaussian smoothing has been used in [249] in the devel-
opment of a locally adaptive regularization scheme. In addition
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to this kind of elasticity inherent in parametric models, other
smoothness and physics-based constraints have also been ap-
plied in different applications. Smoothness constraints based
on the derivatives of the deformation field formulated as the
bending energy have been used for a regular grid of control
points in the FFD model [203]. Jacobian of transformation has
also been incorporated as constraints for topology preservation
via interval analysis optimization in a nonrigid registration al-
gorithm [222].

The PDE-based elastic models are generally more flexible
than the parametric basis function models. Elasticity in these
models is formulated through the constraints applied to the
original Euler-Lagrange equation in the continuum mechanical
elastic material and viscous fluid models. Elasticity based on
the Navier-Stokes equation is suitable for small deformations
while for larger deformations, the viscous fluid model is appro-
priate [200], [201], [237], [241], [262]. The degree of elasticity
is determined by the elastic Lamé constants and is formulated
as a competitive cost function between external energy in
similarity maximization and the internal strain, bending or
membrane energy for smoothness. Smoothness constraints
have been formulated based on derivative, Laplacian, or Jaco-
bian transforms of the deformation field in different studies.
The competitive regularization algorithms have been integrated
in most of the widely used spatial normalization techniques,
namely SPM [196], Demons [197], ANIMAL [199], LDFD
[200], NSCM [201], ICER [202], ROF [204], FFD [203],
HAMMER [207], and PASHA [210] (Table I). In addition to
linear elastic constraints, which guarantee the nonnegativity
of the Jacobian of the deformation field in ICER, the effect of
inverse consistency constraints has been considered in [202]. In
[264] the asymmetric property of most registration algorithms
has been discussed and a symmetric registration technique
has been developed based on the so-called inversion invariant
energy minimization. Symmetric image registration has also
been considered in [265]. In an overview [210], various reg-
ularization techniques have been classified and the so-called
pair-and-smooth techniques have been shown to provide a
better behavior compared to the other competitive regulariza-
tion techniques. The regularization terms are not exclusive and
hybrid cost functions based on several constraints may provide
better results, an example being the combination of locally
weighted fluid regularization and elastic regularization [266].

C. Validation

Compared to the validation of multimodality registration
techniques, which depend highly on the use of preapproved or
simulated gold standards, there are several quantitative methods
for the validation of intersubject registration techniques for real
data. Nevertheless, due to the highly complex brain anatomic
variability in different subjects, validation of intersubject regis-
tration techniques is quite challenging. Although the simulated
and synthetic deformations, specifically based on the Brainweb
digital brain phantom, have been used in many articles, e.g.,
[204], [239], [240], and [265], due to the fact that there is no
appropriate model of intersubject brain anatomical variability,
this sort of validation has not been considered as an appro-
priate indicator of the performance of intersubject registration

techniques. Instead, various quantitative measures have been
used in individual studies. Cross-validation through the use of
similarity measures other than those utilized in each registration
technique is one of the basic evaluation methods [215], [219],
[220], [223], [233], [251]. Other measures based on average
brain [197], [196], [246], [252], [267]–[269], tissue overlap
[204], [206], [225], [235], [240], [241], [256], [263], [270], and
sulcus distance [208], [217], [225], [255], [262], [267] have
been used in the literature. Consistency tests have also been
employed as a part of validation in several studies [77], [202],
[212], [228].

Validation through manual expert segmentations has been
presented in several articles [63], [251], [258]. In some articles
the performance of automatic techniques has been compared
to manual and semi-automatic registration techniques. For
example, the automatic Talairach registration technique devel-
oped in [213] has been compared with the registration based on
Talairach points detected by a skilled technician. In determining
correspondences between MRI images, the feature detection
algorithm in [258] has shown to perform similarly to experts
even for complex cortical structures. Qualitative validation
of the registration results has also been carried out through
visual inspection [45], [62], [197], [205], [207], [208], [210],
[219], [227], [229], [230], [234], [236], [246], [249], [250],
[252], [261], [266], matching of detected landmarks and seg-
mentations, and more practically through the postanalysis and
interpretation of the loci of activation maps [77], [188]–[190],
[195], [233], [248], [268]. In some articles such observations
and analysis have been quantified using empirical measures.
For example in [195], the impact of four spatial normalization
techniques on activation detection has been quantified through
the overlap of activation maps. In another study [268], the and

values of statistical parametric mapping have been compared
across the results obtained from three different spatial normal-
ization techniques. The sensitivity of detected activation maps
has been analyzed in [233]. The precision of functional local-
ization has been analyzed through the use of the volumetric
Talairach transformation and two surface-based registration
techniques [188]. More practical consideration of the effect of
spatial normalization on activation maps has appeared in some
fMRI analysis studies [189] and [190].

A few articles have been solely dedicated to the evaluation,
comparison and validation of intersubject registration tech-
niques. Some of these articles have relied on human expertise
for detailed identification of features; for example in [194] a
statistical analysis was carried out on the accuracy of matching
128 carefully defined and expert manually detected landmarks
per hemisphere. The Talairach transformation and the PW
technique [193] were compared, showing that PW provides
more accurate results in spatial normalization. In [271], several
ranking measures were utilized, based on frequency-adaptive
wavelet-space thresholding, to compare the PW technique to
the low-frequency cosine basis function technique of SPM. In
[270], a comparison of three registration techniques was carried
out based on labeled structures overlap measures, relying on the
highly detailed manually labeled MRI brain images of the Brain
Segmentation Repository (BSR) at the Center of Morphometric
Analysis at Massachusetts General Hospital, Boston. In [269],



GHOLIPOUR et al.: BRAIN FUNCTIONAL LOCALIZATION: A SURVEY OF IMAGE REGISTRATION TECHNIQUES 441

several validation criteria, including segmentations based on
the BSR database, expert detected landmarks, atlas-based
segmentation, and average brain construction were used to
compare the accuracy of a B-spline based topology preserving
registration technique [222] with Demons algorithm. In another
study, Crivello et al. [195] compared the average brain image
statistics and several measures of tissue overlap. They also
performed a statistical analysis on the effect of spatial nor-
malization on the overlap of activation maps detected for PET
functional data of 18 subjects. Based on their analysis, they
concluded that the current spatial normalization techniques
had limited effects on those activation maps that were detected
through low-resolution functional analysis [with a full-width at
half-maximum (FWHM) of 8 mm in low-pass filtering of func-
tional images]. The activation maps in such cases overlapped in
42.8% of the total activation volumes of four different spatial
normalization techniques. However, the overlap was shown to
fail dramatically (only 6.2% overlap) when a high-resolution
functional analysis (FWHM of 4 mm) was applied.

In a more comprehensive comparison of six intersubject reg-
istration techniques, Hellier et al. [267] utilized four different
classes of performance measures: 1) quantitative similarity mea-
sures (MSE, CC, and MI) between the registered brains and the
average brain volume as well as visual inspection of the sharp-
ness of the average brain volume; 2) tissue overlap measures;
3) correlation of differential characteristics; 4) sulcal shape and
distance measures. For the fourth item, they utilized the active
ribbon modeling technique described in [272] for 12 major sulci
and computed two measures showing the global positioning dis-
tance and the similarity of sulci shapes. Based on the results ob-
tained, they concluded that compared to an affine transforma-
tion, the higher dimensional registration techniques performed
much better according to the first three performance criteria, but
they did not perform better at matching cortical sulci structures.
This conclusion has been confirmed in [270], indicating that
intersubject cortical variability remains a severe challenge for
volume registration techniques. It, thus, appears to be necessary
to incorporate the new track of studies on cortical surface regis-
tration into the spatial normalization procedure.

D. Cortical Surface Registration

There are several reasons why cortical surface registration
is needed for functional localization. First, most of the normal
anatomical variability in the brain is in the cortical layered struc-
ture, and functional localization is extremely sensitive to the ac-
curacy of registration in this area [192], [273], [274]. Second,
the cortical surface structures, sulci and gyri, subdivide the brain
into anatomically separate areas needed for activation labeling
[275]–[277]. Third, due to the highly folded nature of the cor-
tical surface, a small inaccuracy in volume registration may re-
sult in large inaccuracies in structural localization, for example
for points located at two sides of a sulcus [189].

The cortical surface registration techniques have originated
from some of the earlier feature-based registration techniques,
such as the crest lines [278] and convex hulls [279] algorithms.
These techniques are based on geometrical landmarks char-
acterizing the cortical surface structure. A few methods are
based on manually identified surface landmarks, such as the

viscoelastic fluid sheet registration in [192]. Surface features
have also been utilized in combination with volume registration
techniques. Examples of hybrid volume and surface registration
techniques include ANIMAL+sulci [199] and HAMMER+sur-
face [255], [256], [280]. The evolution of cortical surface
registration techniques involves a sequence of geometrical
image processing algorithms including surface reconstruction,
segmentation and structural modeling, inflation, flattening, and
mapping to a surface-based coordinate system.

Surface reconstruction is an unfolding procedure to represent
or visualize the folded geometry of the cortical surface. In
its simplest form, it is achieved by segmentation of gray and
white matter interfaces, a connecting procedure, and finally
a triangular tessellation [281]–[285]. Davatzikos and Prince
[286] and Davatzikos and Bryan [287] had a leading role
in utilizing deformable active shape models for the cortical
surface. The reconstruction process was improved in [282] by
evolving the fuzzy segmentation and isosurface algorithm to
a deformable surface model. Three other groups, Van Essen
et al. [288], Dale and Fischl et al. [281] and Joshi et al. [289]
investigated cortical surface reconstruction procedures based
on tissue classification and triangular tessellation. A tutorial
on surface reconstruction, surface-based atlases, surface-based
spatial normalization, and functional mapping to the cortical
surface has been written by Drury et al. [290]. Surface mapping
has also been considered in a more general tutorial on brain
mapping by Thompson and Toga [291]. A few of the surface
reconstruction algorithms have been implemented as software
tools for surface visualization and mapping. The tools listed in
Table II are Surefit, based on the technique of Van Essen et al.
[288], Freesurfer by Fischl et al. [281], [292], [293], BrainSuite
by Shattuck and Leahy [294], and Cortical reconstruction using
implicit surface evolution (CRUISE) by the Image Analysis
and Communications group at Johns Hopkins University (Bal-
timore, MD) [283], [295]. Most of these techniques are based
on initial segmentations for white matter, gray matter, and
cerbrosplinal fluid tissue classification, triangular tessellation
for reconstruction, and a topology correction method to provide
geometrical smoothness and topology preservation [296]. A
common approach for topology correction has been the use of
deformable surface models [297]–[299]. Graph-based topology
correction algorithms have been used in CRUISE and Brain-
Suite [283], [294], [297], [300].

The required steps to go from the cortical surface reconstruc-
tion to the surface registration and visualization for functional
localization include cortical surface inflation, flattening and
probably more advanced structural segmentation [292], [295],
[301]. Inflation is useful for visualization, and flattening to
planar, spherical or ellipsoidal maps is a simplification to permit
registration of the cortical surface to surface-based standard
coordinates [288], [302]–[304]. Detection of structural surface
features, i.e., sulci and gyri, has a direct impact on surface
registration techniques. Most of the research on sulcus mor-
phology, modeling, detection, and labeling has been inspired by
the properties of the sulcus homology and variability in Ono’s
Atlas of the Cerebral Sulci [305]. Fundamental work has been
done in [306] on active contour models, and in [272] on active
ribbon models. Alternatives and extensions to these techniques
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TABLE II
CHARACTERISTICS OF CORTICAL SURFACE RECONSTRUCTION TECHNIQUES

have been made in modeling the cortical sulci through statistical
shape models and active shape models [307]–[314]. In other
work, a method based on filling a cortical mesh with gyral la-
bels has been developed [315], and a surface feature extraction
algorithm based on Laplacian maps has been developed [285].
On the basis of differential geometry, a conformal mapping
approach to brain surface mapping has also been presented in
[316]. An object-based morphometric approach to compare
cerebral cortex structures have been used in [317].

Surface reconstruction and sulcal models have been used
in surface mapping and registration techniques, for example
[318]. The importance of surface registration for functional
and anatomical brain mapping has been discussed in [192].
An overview of the earlier techniques has been presented in
[319]; but the necessity of using cortical surface registration
in spatial normalization and functional localization has only
been considered recently. In [188], it has been shown that the
surface-based registration techniques perform better than the
Talairach volume registration technique in the localization of
auditory cortex activations. In [320], an evaluation method has
been developed for quantitative assessment of accuracy and
comparison of a few cortical surface registration techniques
using known synthetic deformations and their effect on group
activation analysis. The newer cortical surface registration
techniques are based on geometrical features [288], [303],
[321] or sulcus models and maps [322]–[324], [262]. In [284],
a technique has been developed based on spherical mapping
of hemispheres and has been validated according to sulcus
alignment and automatic labeling, and in [325], a hybrid
technique has been formulated based on the level set method
and geometrical features. These new techniques have been
evaluated separately and there has been no comparison of their
performance.

The final stage of functional localization, activation labeling,
is highly affected by the topics covered in this section. Cortical
surface reconstruction is useful primarily for visualizing the 3-D
location of activation maps as well as for high-level manual
neuroanatomic labeling [326], [327]. On the other hand, auto-
matic neuroanatomic labeling has been possible using accurate
surface registration and sulcus matching techniques. These are
the most comprehensive algorithms discussed in this section,
utilizing segmentation, reconstruction, and structural mapping
procedures to produce reliable labels. The purpose of these algo-
rithms is to decrease the burden of tedious subjective manual la-
beling in common applications. The validation of the automatic

labeling techniques includes statistical analysis of consistency,
accuracy and efficiency with respect to experts’ manual labeling
[276], [328], [329]. Nevertheless, due to the difficulties in sulcus
matching, most of the algorithms have been used to produce as-
sisted labeling rather than fully automated labeling. Some of
the most important structural brain labeling algorithms, listed
in Table III, are anatomical automatic labeling by Tzourio-Ma-
zoyer et al. [43], sulcus extraction and assisted labeling by Le
Gualher et al. [272], program for assisted labeling of sulcus re-
gions (PALS) by Rettman et al. [330], and Mindboggle by Klein
and Hirsch [328].

V. DISCUSSION

A. Brain Atlases and Brain Templates

The success of a brain atlas depends upon how well the
brains of different anatomies can be matched to the represen-
tation of anatomy in the atlas. Although the atlas of Talairach
and Tournoux has become a universal standard framework for
reporting neuroscientific studies, it does not provide a complete
representation of the human brain anatomy. The ICBM popu-
lation-based atlases are constructed by averaging a relatively
large number of brain MRI scans that are transformed into the
Talairach coordinates. Since the low-dimensional Talairach
transformation cannot capture the high-dimensional variability
of the brain anatomy, the standard MNI and ICBM atlases are
representatives of the average brain size and shape, and the cor-
tical structures are quite vague and blurred in these atlases due
to the effect of low-pass filtering in the averaging process. In
practice, the MNI and ICBM templates and the Talairach brain
atlas are being used as standard frameworks in many functional
neuroimage analysis studies. However, when researchers try
to achieve an accurate functional localization, even through a
tedious manual anatomical labeling and interpretation, by over-
laying functional data onto the Talairach atlas, the inaccuracy
of the registration steps and even the slight differences between
standard templates and the Talairach atlas pose serious limiting
factors.

Newer automatic labeling algorithms and advanced brain
warping and nonrigid registration techniques are based on
matching internal brain and cortical surface structures and,
thus, require more accurate representations of the anatomy in
the atlas. Deformable and probabilistic brain atlases have been
proposed to address these requirements. Cortical surface reg-
istration, sulcus matching techniques, and advanced nonrigid
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TABLE III
CHARACTERISTICS OF AUTOMATIC STRUCTURAL BRAIN LABELING TECHNIQUES

registration techniques can be utilized as tools in the construc-
tion of more realistic and accurate deformable brain atlases.
Nevertheless, structural variability in the cortical morphology
is a real challenge for developing a standard cortical map of
the brain. Brain variability becomes more severe and its effects
become more profound when comparing the function and
structure of different groups of subjects, e.g., in studying the
functional and anatomical differences of diseased and healthy
groups. Considerable variations of brain anatomy in psychiatric
and mental diseases such as dementia, schizophrenia, and
Alzheimer’s disease have been the motivation for developing
disease-specific brain atlases. The choice of an atlas or template,
in standard coordinates or based on deformable subpopulation
atlases, depends on the type of clinical and scientific studies
and may greatly affect the interpretation and comparison of the
results.

B. Functional-to-Anatomical Registration

Functional-to-anatomical brain image registration has gone
through several decades of active research, and still remains an
important research area. In single-subject analysis and specifi-
cally in neurosurgical applications, the accuracy and reliability
of functional-to-anatomical image registration is the limiting
factor. In group analysis, however, spatial normalization is the
most prominent source of inaccuracy. In practice, the current
functional-to-anatomical registration techniques involve the op-
timization of an affine transformation model in a multiresolution
framework to maximize a similarity measure. MI or normalized
MI has shown to be the most robust and accurate similarity mea-
sure in many studies.

Research on the improvement of functional-to-anatomical
image registration is now focused on finding appropriate corre-
spondences through more general and reliable similarity mea-
sures based upon information theory. A direction of research is
towards extending MI to incorporate spatial information. Rigid
and affine transformations provide practical bases for robust
and reliable functional-to-anatomical registration. However,
nonrigid registration has been proposed to deal with the effect
of nonlinear local distortions in functional images, specifically
in EPI sequences used for fMRI. Different techniques can be
used in the validation of rigid and affine registration techniques,
while in-vivo validation of nonrigid multimodality registration
techniques is extremely difficult due to the lack of reliable
and accurate local correspondences between images. Several
aspects of in-vivo validation are being actively investigated,

including the effect of registration on functional localization
and activation labeling, and the accuracy of registration in the
presence of motion and distortion, different fields of view,
limited resolution, and signal voids in functional images.

C. Intersubject Registration

Current spatial normalization techniques, such as the low-
frequency cosine basis functions in SPM, the Demons algo-
rithm, ANIMAL, OSN, HAMMER, and PASHA, seem to per-
form satisfactorily in common neuroscience applications. How-
ever, more accurate functional localization is often desired, es-
pecially as images of higher resolution become available, for
more demanding applications. The direction of future research
is, thus, anticipated to be toward utilizing more complicated hy-
brid intensity- and feature-based techniques. Due to the com-
plex variability of the brain anatomy, a fair amount of compu-
tational effort is required to achieve this. The development of
accurate spatial normalization techniques and high-resolution
anatomical brain atlases/templates should be done in parallel.
More work is needed to further develop spatial normalization
and intersubject registration techniques, in various aspects such
as the transformation model, correspondence bases, regulariza-
tion and optimization; and especially in-vivo validation.

One of the main challenges that researchers have pointed out
and developers have proposed for future research is the effect of
spatial normalization on functional maps. Noting that the res-
olution of functional imaging and the accuracy of functional
analysis techniques are being improved, the accuracy and re-
liability of spatial normalization are expected to play a critical
role. Analysis of functional maps in studies of diseases such as
dementia, in which severe anatomical differences exist between
healthy and diseased brains, may lead to spurious results or in-
valid interpretations and conclusions, in which anatomical dif-
ferences are mischaracterized as functional differences. One ap-
proach to overcome this problem is the use of subpopulation or
disease-specific atlases. Cortical surface registration techniques
are being incorporated for routine use in spatial normalization
techniques for functional analysis. The convoluted structure of
the cortical surface and the level of variability versus homology
in sulcal and gyral patterns in the brain is a real challenge for cor-
tical surface registration. Development of methods such as cor-
tical reconstruction, segmentation, tissue classification, and flat-
tening and mapping to planar, ellipsoidal or spherical surfaces,
utilizes powerful tools from differential geometry, image pro-
cessing and computer vision, including deformable active and
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statistical shape models. Topology correction in cortical recon-
struction, finding appropriate correspondences in reconstructed
and mapped structures, sulcus modeling, and descriptions and
subsequent mapping to standard cortical structural maps are re-
quired. These techniques are expected to be used both for vol-
umetric spatial normalization in group analysis studies, and for
making automatic activation labeling tools for the last stage of
functional localization.

In conclusion, technical advances in functional brain imaging
and automatic functional localization are leading to clinical and
scientific applications with higher spatial and temporal resolu-
tions. The construction of standard and subpopulation brain at-
lases and brain templates, functional-to-anatomical registration,
and spatial normalization through volumetric registration and
cortical surface registration are deemed important fields of study
in this burgeoning area of research.
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