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Abstract

For functional magnetic resonance imaging (fMRI) studies, many researchers use multi-
subject blocked designs to identify active brain regions for a certain stimulus type of interest.
Before performing such an experiment, careful planning is necessary to obtain efficient stim-
ulus effect estimates within the available financial resources. The optimal number of subjects
and the optimal scanning time for a multi-subject blocked design with fixed experimental
costs can be determined using optimal design methods. In this paper, the user-friendly com-
puter program POBE 1.1 (program for optimal design of blocked experiments, version 1.1)
is presented. POBE provides a graphical user interface for fMRI researchers to easily and
efficiently design their experiments. The computer program POBE calculated the optimal
number of subjects and the optimal scanning time for user specified experimental factors and
model parameters so that the power is maximised for a given study budget. POBE can also
be used to determine the minimum budget for a given power. Furthermore, a maximin design
can be determined as efficient design for a possible range of values for the unknown model
parameters. In this paper, the computer program is described and illustrated with typical
experimental factors for a blocked fMRI experiment.
Keywords: functional magnetic resonance imaging (fMRI), computer program, blocked de-
sign, optimal number of subjects, scanning time

1 Introduction

One of the most prevalent methods for functional neuroimaging and the study of the human brain
is functional magnetic resonance imaging (fMRI) (Di Salle et al., 1999; Lindquist, 2008). It has
provided researchers with advanced insight about cognitive processes like perception, language,
attention and memory (Chein and Schneider, 2003). For a multi-subject fMRI experiment, several
subjects are placed one by one in an fMRI scanner and asked to react or attend to certain stimulus
types, e.g., listening to auditory stimuli or watching visual stimuli. The measured fMRI signal is
caused by the changes in concentration of oxy- to deoxygenated blood in activated brain regions
and the magnetic properties of oxy- and deoxygenated blood (Logothetis and Wandell, 2004).
The fMRI signal is not only measured temporally over the time course of the experiment but also
spatially over the brain at so-called voxels. A voxel is a 3D imaging unit, e.g., of size 3 mm x 3
mm x 3 mm, and fMRI signal time courses for whole brain coverage are typically obtained with a
sampling frequency of 2 to 4 seconds from around 100,000 voxels.

A popular design type for fMRI experiments are blocked designs which are efficient for detection
of activation in brain regions (Friston et al., 1999; Birn et al., 2002; Liu and Frank, 2004; Maus
et al., 2010b). For blocked designs, stimuli of the same type are grouped within blocks and the
different block types are repeated cyclically during a time period of several minutes. The block
types can be task blocks, where stimuli are presented and the subject performs the corresponding
task, and rest or fixation blocks, where no stimuli are presented or the subject simply views a
fixation cross. Rest or fixation blocks will also be called null blocks in the following as they consist
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of null events which are time points with no stimuli. During an experiment these blocks are
ordered in a prespecified manner, e.g., task blocks are alternated with null blocks. A significant
difference in fMRI signal between tasks and controls, i.e., another task or rest, indicates that the
voxel corresponding to this fMRI signal is active for the task of interest. Null blocks are denoted
by N and task blocks by A1, . . . , AQ, where Ai denotes the ith stimulus type or ith task block
type, and Q represents the number of stimulus types.

This paper presents a computer program with a graphical user interface (GUI) which provides
a user-friendly environment for researchers to plan a multi-subject blocked design with regard to
the optimal number of subjects and optimal scanning time. Design optimality has been commonly
defined as efficient estimation of the model parameters of interest based on linear models. The
optimal design is then the design which minimizes a function, e.g., the trace, of the covariance
matrix for the considered model parameters (Friston et al., 1999). For a one dimensional contrast
of the stimulus effects or one stimulus effect of interest, this approach results in the design with
maximum statistical power. The methodology of the program is discussed in Section 2 and in
Maus et al. (2011) in more detail. The program runs within MATLAB. One important reason
for choosing MATLAB is that MATLAB is a popular software program within the neuroimaging
research community and several other programs for analysis of fMRI data are also MATLAB
based, e.g., Statistical Parametric Mapping (SPM) (Wellcome Trust Centre for Neuroimaging,
2009) and fMRIstat (Worsley et al., 2002). The computer program POBE allows the users to
specify various experimental conditions and model assumptions. The graphical user interface
facilitates the calculation by an easy to use environment.

Previous research on optimal design of blocked fMRI experiments has focused on the optimal
length and order of blocks. The optimal block length recommended in literature varies between 10
and 20 seconds (Maus et al., 2010b,a; Chein and Schneider, 2003; Aguirre and D’Esposito, 1999),
and the optimal block order should present control blocks as often as task blocks (Maus et al.,
2010a). This means that block order A1A2 is optimal if the contrast A1 − A2 between stimulus
type A1 and A2 is of interest with either A1 or A2 being the control. The exact order of stimulus
block or null blocks in the block order is here not relevant, e.g. A1A2 can be replaced by A2A1.
Otherwise if activation during task A1 and A2 is of interest, block order A1A2N is optimal and
the null block N is the control block. If the contrasts A1 −A3 and A2 −A3 are of interest and A3

is a control block, block order A1A2A3 is optimal as A3 corresponds here to the control condition
similarly to the null block in the previous example. Block order A1A2 means that during the
experiment task blocks of stimulus type A1 are presented and followed by task blocks of stimulus
type A2. This order is repeated several times during the experiment. Order A1A2N means that
task blocks A1 are followed by task blocks A2 which themselves are followed by null blocks during
the experiment. Further studies about the choice of block order can be found in Nakai et al. (2003)
and Mohamed et al. (2000). However, to plan a multi-subject fMRI experiment, the researcher
also needs to determine the optimal number of subjects and scanning time per subject to obtain
efficient experimental results within the given budget.

Typically, 10 to 20 subjects are scanned during a continuous scan period of up to 15 minutes.
Given the block length and block order, the scanning time for a blocked design is determined by the
number of cycles (repetitions) of the block order. Results for the optimal number of subjects and
cycles for efficient estimation of the effects of interests within a given cost budget are presented in
Maus et al. (2011). The methods in Maus et al. (2011) are extended in this paper by the maximin
procedure which helps users to find an efficient design within a possible range of values for the
unknown model parameters. Because of the high costs for fMRI experiments, it is highly relevant
that researchers possess tools like the one presented in this paper to plan their studies and use
their budget efficiently. One effect of the high costs for fMRI is that fMRI studies often only
have small numbers of subjects. However, the choice of the number of subjects for an experiment
should be based on the design efficiency which is achieved for this number of subjects.

The software presented here will help and educate fMRI researchers about the optimal choice
for the number of cycles and for the number of subjects. So far, no tools have been provided
for researchers to calculate the optimal multi-subject blocked designs taking costs into account.
Kao et al. (2009) developed MATLAB code to determine the optimal stimulus sequence by the
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use of a genetic algorithm. The optimal stimulus sequence for blocked designs would refer to the
optimal block order and length of blocks. Their code is described in Kao (2009). In contrast to our
program, they did not consider multi-subject experiments or provide a graphical user interface.
Mumford et al. (2007) provide a useful MATLAB based application and graphical user interface,
called fMRIpower tool, to calculate power for future group fMRI experiments. Previous fMRI
analyses within the fMRI software packages SPM and FSL are needed for the fMRIpower tool
restricting it thus to users of SPM or FSL (Smith et al., 2004; Woolrich et al., 2009). Their
program fMRIpower is based on the power calculation methodology presented in Mumford and
Nichols (2008) while our methodology involves minimizing the average variance of the estimators
which results in maximum power for a single effect of interest. Furthermore in contrast to Mumford
and Nichols (2008), costs are taken into account and the program POBE is also MATLAB based
but self-contained. POBE can further be used to find the minimum budget for a desired level of
power.

The paper is organized as follows. In Section 2 the methodology is outlined. The first-level
(within-subject) and second-level (between-subject) model, the cost function, the optimality cri-
teria and the maximin design are explained. Section 3 describes the computer program and its
input values. An illustration of the computer program with a practical example is provided in
Section 4. Finally, a conclusion is presented in Section 5.

2 Methods

2.1 Model

To describe the hierarchical structure of multi-subject fMRI data, the measured fMRI signal is
commonly expressed in a first-level model on the subject level and a second-level model combining
the first-level parameters from all subjects (Mumford and Nichols, 2006; Penny and Holmes, 2007).
Each subject is measured at T time points with a given repetition time (TR). The following first-
level model is used to express the fMRI signal Yi at a given voxel for subject i:

Yi = Zβi + Sγi + ϵi, (1)

where the T ×Q matrix Z models the expected fMRI signal to the Q different stimulus types due
to their presentation during the experiment. The matrix Z is calculated by convolution of the
stimulus sequence, which indicates the stimulus presentations, with the hemodynamic response
function (HRF) (Kao et al., 2007). The HRF corresponds to the fMRI signal after one short
stimulus duration. The parameter vector βi corresponds to the stimulus effects for subject i.
The nuisance parameter vector γi represents the effect of the nuisance terms in matrix S which
models low frequency noise. The error ϵi captures all variation in the fMRI signal which is not
described by the stimulus or nuisance effects. The error ϵi = (ϵi1, . . . , ϵiT )

⊤ is assumed to be
normally distributed, that is ϵi ∼ N(0, σ2

ϵΣ) with expectation 0 and covariance matrix σ2
ϵΣ for all

i = 1, . . . , N .
Furthermore, it is assumed that the error ϵi follows an autoregressive error of order 1 (AR1)

structure. The AR1 structure is a common and realistic model for the error in fMRI data analysis
(Gautama and Van Hulle, 2005). It means that the error variance is stationary over the different
time points t = 1, . . . , T , i.e., V ar(ϵit) = σ2

ϵ for all t ∈ {1, . . . , T}, and that the correlation between
two errors at different time points t1 and t2 decreases with increasing time lag between these two
time points, i.e., Corr(ϵit1 , ϵit2) = ρ|t1−t2| for all t1, t2 ∈ {1, . . . , T}. The parameter ρ is called the
AR1 autocorrelation parameter.

The hemodynamic response function is commonly modelled by the double gamma function, a
difference of two gamma distributions:

h(t) = c1 ·
(
ba1+1
1 (t− d)a1e−b1(t−d)

Γ(a1 + 1)
− ba2+1

2 (t− d)a2e−b2(t−d)

c2Γ(a2 + 1)

)
. (2)
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The first gamma distribution models the positive peak of the HRF and the second gamma dis-
tribution models the negative peak, the undershoot, of the HRF. Standard values for the time to
peak parameter a1 and the positive dispersion b1 are a1 = 5 and b1=1. The time to undershoot
parameter a2, the negative dispersion b2, the positive to negative ratio parameter c2 are commonly
chosen by a2 = 15, b2 = 1 and c = 6. The onset parameter d is normally set to 0. Using these
parameters, the so-called standard or canonical HRF is obtained (Henson and Friston, 2007). If
only the peak is modelled, the single gamma HRF suggested by Boynton et al. (1996) is used.
Furthermore, a scaling parameter c1 is specified here to model a saturation effect under nonlin-
earity of the HRF (Boynton et al., 1996; Huettel and McCarthy, 2000; Wager and Nichols, 2003).
Under linearity of the HRF, the scaling parameter c1 is assumed to equal 1.

The first-level subject-specific parameters βi are combined in a second-level model to describe
the group parameter vector βG of interest:

βi = βG + bi, (3)

where bi is the vector of random subject-specific stimulus effects which are expected to be normally
distributed with expectation 0 and covariance matrix σ2

qD. The matrix D corresponds to the
correlation matrix of the random-effects vector bi.

The aim of a blocked fMRI experiment is mostly the localization of active regions for certain
tasks, e.g., viewing faces. It is common to consider the differential activation between different
tasks to localize specific cognitive sub-processes. For example, the contrast between viewing faces
and viewing houses can be of interest to localize regions responsible for face recognition. To
localize active voxels, the stimulus effect vector βG or a contrast CβG of the stimulus effects is
estimated at each voxel and tested for zero effect. The matrix C is a matrix where each row
contains one contrast of interest. If C equals the identity matrix I, the stimulus effects βG are
of interest. In this paper, designs are presented which are efficient to estimate the effect vector
CβG. The efficiency of a design is evaluated here by the A- or D-optimality criterion based on the
covariance matrix of the estimator Cβ̂G for CβG (Atkinson et al., 2007; Wager and Nichols, 2003).
Strictly speaking, the applied A-optimality criterion explained in Section 2.2 is called C-optimality
criterion in optimal design literature and reduces to the A-optimality criterion when C equals the
identity matrix I. However, in consistency with fMRI literature the term A-optimality criterion
will be used. The covariance matrix is given by

Cov(Cβ̂G) =
1

N

(
σ2
ϵC

(
Z⊤V ⊤(I − PV S)V Z

)−1
C⊤ + σ2

qCDC
⊤
)
, (4)

where PV S is the projection matrix onto the space spanned by the matrix V S and I is the identity
matrix (here of size T × T ) (Maus et al., 2011). The matrix V = Σ−1/2 is the inverse square

root matrix of the error correlation matrix Σ. The covariance of Cβ̂G is thus an averaged sum of

the within-subject covariance matrix σ2
ϵC

(
Z⊤V ⊤(I − PV S)V Z

)−1
C⊤ and the between-subject

covariance matrix σ2
qCDC

⊤.

2.2 Optimality criteria

Two different optimality criteria, the A- and D-optimality criteria, can be specified in POBE to
find the optimal design for which a function of the parameters’ covariance matrix is minimized.
The A-optimality criterion selects as optimal the design which minimizes the trace of the covariance
matrix Cov(Cβ̂), that is the sum of the individual variances for the (contrast) effect estimates in

Cβ̂, over all designs ξ in the design space Ξ. The D-optimality criterion chooses as optimal design
the design which minimizes the determinant of the covariance matrix Cov(Cβ̂) over all designs
in the design space. As a consequence, the confidence ellipsoid for the parameters of interest is
minimized.

For our program and approach, designs ξ are compared which differ in the number of subjects
and the number of cycles. Other experimental factors, e.g., the block order or number of stimulus
types, are expected to be chosen by the researcher depending on the research question of interest.
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Therefore, the design space Ξ, from which the optimal design is chosen, contains blocked designs
ξ with different number of subjects and cycles:

Ξ = {ξ|ξ is a blocked design with NC cycles and N subjects, NC , N ∈ N}. (5)

Given the total experimental costs, the number of subjects and cycles are restricted to certain
combinations which do not exceed the costs. The cost function describing the experimental costs
is explained in Section 2.3. The A-optimal design ξ∗ is the design with values for N and NC

which minimize the sum of the variances for the (contrast) effect estimates over all designs ξ ∈ Ξ
subject to a linear cost function. In other words, the A-optimal design ξ∗ minimizes the trace of
the covariance matrix Cov(Cβ̂)

trace(Cov(Cβ̂G)) =
σ2
q

N

(
σ2
ϵ

σ2
q

trace
(
C(Z⊤V ⊤(I − PV S)V Z)

−1C⊤)+ trace(CDC⊤)

)
(6)

over all designs ξ in the design space Ξ within a given budget. For the D-optimality criterion, we
consider the expression

det(Cov(Cβ̂G)) =
σ2
q

N
det

(
σ2
ϵ

σ2
q

C(Z⊤V ⊤(I − PV S)V Z)
−1C⊤ + CDC⊤)

)
(7)

Without any budget restriction, the higher the number of subjects and cycles, the better the
experiment for both optimality criteria, and no recommendation for the optimal number of subjects
and cycles is possible. The budget constraint limits the possible combinations of N and NC so
that the calculation of the optimal number of subjects Nopt and the optimal number of cycles
NCopt is possible. In the following section, it is described how the total budget is expressed by a
linear cost function.

It can be seen from Equation (6) and Equation (7) that it is sufficient to focus on the variance
ratio of within-subject variance to between-subject variance σ2

ϵ /σ
2
q to determine the values NC

and N for which the minimum of Equation (6) is obtained. The between-subject variance σ2
q does

not influence the values of NC and N for which the minimum of Equation (6) and Equation (7)
is obtained because it is only a multiplicative factor in Equation (6) and Equation (7).

2.3 Cost function

The total experimental costs CT are the sum of the basic costs for all subjects and the costs for
the effective functional scanning time of all subjects. The basic cost for each subject is denoted
by C1 and consists of the subject fees, recruitment and equipment costs per subject, costs due to
preparation of a subject or the scanner before the subject’s session and costs for the scanner time
to obtain structural T1-weighted images. The costs for the effective scanning time (functional
imaging) per hour are given by C2. The scanning time of all subjects equals N ·NC · TC , where
TC is the scanning time in seconds per cycle. The linear cost function is given by the following
expression:

CT = N · C1 +N ·NC · TC · C2/(3600s). (8)

The scanning time TC per cycle depends on the block order, the number NBLA
of trials per task

block, the number NBL0 of null events per null block and the stimulus onset asynchrony (SOA).
The stimulus onset asychnrony (SOA) gives the time between trials in a task block or between
null events in a null block. In general it is recommendable to choose the SOA as small as possible
so that the hemodynamic response function of successive trials sums up to a strong fMRI signal
per task block. However, it has to be taken into account that for small SOAs, e.g. lower than 2
s, a nonlinear saturation effect takes place so that the hemodynamic response to successive trials
is lower than expected. A nonlinear saturation can be modelled in POBE by specifying a scaling
parameter smaller than 1 for the HRF in Figure 4.
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2.4 Maximin criterion

Using one of the optimality criteria described in Section 2.2 and the cost function in Equation (8),
the optimal design with Nopt subjects and NCopt cycles can be determined. However, the AR1
autocorrelation parameter ρ, the variance ratio σ2

ϵ /σ
2
q and the offdiagonal elements of the random-

effects correlation matrix D need to be known. These values can be determined from previous
studies or pilot studies. If a specification of these values is not possible, the maximin criterion can
be applied which suggests a design with relatively high efficiency over the whole possible range
of parameter values. The software focuses on the calculation of maximin designs for a possible
range of the autocorrelation and/or a possible range of the variance ratio. The random-effects
correlation which is equal to the off-diagonal elements of the matrix D is only relevant under
certain circumstances, i.e., if more than one stimulus types is considered and C is unequal to the
identity matrix or the D-optimality criterion is used. In contrast, the autocorrelation and the
variance ratio are relevant for any situation.

The maximin criterion uses the relative efficiency to compare designs to each other. The
relative efficiency (RE) of design ξ1 versus another design ξ2 is given by

RE(ξ1|ξ2) =
ψ
(
Cov

(
Cβ̂ξ2

))
ψ
(
Cov

(
Cβ̂ξ1

)) , (9)

where ψ denotes the trace or the determinant depending on whether the A- or the D-optimality

criterion is used. The covariance matrix Cov
(
Cβ̂ξj

)
denotes here the covariance matrix for Cβ̂

obtained when design ξj (j = 1, 2) with its values for the number of subjects and cycles is applied.
The relative efficiency is a value between 0 and ∞ with values smaller than 1 indicating that
design ξ1 is less efficient than design ξ2. Relative efficiencies higher than 1 indicate that design ξ1
is more efficient than design ξ2. The maximin design is given by the following expression

ξMMD = argmax
ξ∈Ξ

min
p∈P

RE(ξ|ξ∗p). (10)

The unknown parameter is here denoted by p which corresponds either to the autocorrelation
parameter ρ of the AR1 error structure, the variance ratio σ2

ϵ /σ
2
q or to a two-dimensional parameter

p = (p1, p2), where p1 corresponds to the autocorrelation parameter ρ and p2 corresponds to the
variance ratio σ2

ϵ /σ
2
q . The possible range of values for this unknown parameter p is given by P ,

e.g., P = [0, 0.3] and p is the autocorrelation parameter ρ.
Firstly, the maximin criterion calculates the relative efficiencies of a given design ξ versus the

locally optimal designs ξ∗p for a given value of p in P . Secondly, the minimum of these relative
efficiencies is determined over all values of p in P . This minimum value of the relative efficiency
over all possible values of p is the worst relative efficiency for a design ξ. Thirdly, the design ξ
with maximum minimum relative efficiency over all designs ξ in Ξ is chosen to be the maximin
design ξMMD. If the maximum minimum relative efficiency corresponding to this design is high,
the maximin design is efficient over the whole possible range of values for the parameter p.

2.5 Code

In this section the procedure and MATLAB code to find the optimal number of cycles and subjects
is described. A flowchart of the procedure is given in Figure 1. The computation is complicated by
the fact that the optimal number of subjects Nopt and cycles NCopt need to be positive integers.
For simplification and to explain the general procedure without too many technical details, the
explanation is restricted here to finding an optimal positive integer value of NC but not necessarily
an optimal integer value for N . Furthermore, we will focus below on the A-optimality but the
same explanation and argumentation can be used for the D-optimality criterion.

To find the A-optimal design, we want to minimize trace(Cov(Cβ̂)) with respect to NC and N .
The number of subjects N can be expressed by the number of cycles NC using the cost function
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in Equation (8) as all other factors are given:

N =
CT

C1 +NC · TC · C2/(3600s)
(11)

By replacing N in Equation (6) by the expression above, one can focus on minimizing the trace

of the covariance matrix Cov(Cβ̂) with respect to NC . The optimal number of cycles NCopt is
namely the number of cycles for which the trace of the covariance matrix is minimized. When
the optimal number of cycles NCopt has been determined, the optimal number of subjects Nopt

can be calculated using Equation (11). To find the optimal number of cycles, the value of NC is
increased from the minimum possible value, e.g., 1, in steps of 1 during a loop until a minimum
value for Equation (6) is obtained (see Figure 1).

This procedure assumes that there is only one minimum value of Equation (6) in dependence of
NC . If there is more than one minimum value of Equation (6) in dependence of NC , our procedure
would only find the minimum, for which the number of cycles is the lowest and for which as a
consequence the number of subjects is the highest. In the following, it will be explained why the
assumption that there is only one minimum of Equation (6) in dependence of NC is justified.

For uncorrelated errors and the A-optimality criterion, it has been shown analytically that only
one positive value for NC exists where a minimum is obtained (Maus et al., 2011). For correlated
errors or the D-optimality criterion, analytical solutions are more complicated. However, it can
be justified with logical arguments why the value of the A-optimality criterion in Equation (6)
or the value of the D-optimality criterion in Equation (7) is either a convex function of NC or a
continuously increasing function for increasing NC . In the latter case the minimum of Equation (6)
or Equation (7) would be achieved for NC equal to 1. For simplification, we will focus again in
the following explanation again on the A-optimality criterion but the explanation also holds for
the D-optimality criterion.

The first part σ2
q/N of the A-optimality criterion in Equation (6) is (after replacing N by

its expression in Equation (11)) a linear function of NC and increases thus linearly for increas-

ing NC . The second part σ2
ϵ · trace(C

(
Z⊤V ⊤(I − PV S)V Z

)−1
C⊤ + CDC⊤) of Equation (6)

decreases for increasing NC as every new cycle provides new information about the effects Cβ
of interest so that the trace of the within-subject covariance matrix plus the between-subject
covariance matrix decreases. However, the gain of information is higher for lower number of
cycles and decreases with an increasing number of cycles NC . Therefore, the decrease of σ2

ϵ ·
trace(C

(
Z⊤V ⊤(I − PV S)V Z

)−1
C⊤ + CDC⊤) in Equation (6) attenuates for higher values of

NC . The decrease of the second term in Equation (6) is thus not linear and approaches zero for
increasing NC .

There are two possibilities for the behaviour of the product of the first term σ2
q/N with the

second term in Equation (6). The first possibility is as follows. For lower number of cycles the first
term σ2

q/N in Equation (6), which linearly increases for increasing NC , is overruled by the second
term in Equation (6), which has a more than linear decrease for increasing NC . For higher number
of cycles the first term σ2

q/N in Equation (6), which always increases linearly for increasing NC ,
overrules the second term in Equation (6), which decreases now weaker than linear for increasing
NC . It follows that Equation (6) firstly decreases and then increases for increasing NC . Thus,
Equation (6) is a convex function for any positive NC . Based on the fact that Equation (6) is a
convex function of NC , an integer value for NC can be found using the procedure as described in
Figure 1, where NC is increased within a loop until a minimum of Equation (6) is found.

The second possibility is that the first term σ2
q/N , which always increases linearly for increasing

NC , overrules the second term in Equation (6) for all NC . For this possibility, Equation (6) is
an increasing function for increasing NC and the minimum value of Equation (6) is obtained for
NC = 1, the minimum possible value of NC . The loop would be stopped for NC = 2 as a minimum
value of Equation (6) has been found for NC = 1 (see Figure 1).
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Figure 1: Flowchart of procedure to find optimal number of cycles and subjects
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3 The computer program

The computer program POBE (program for optimal design of blocked experiments) provides an
easy method for researchers to design their fMRI experiments. This section describes the graphical
user interface of the program POBE which determines the optimal number of subjects and cycles
for a blocked fMRI experiment. The program will be made available on http://www.nitrc.org/ and
can be obtained from the author upon request. It is also possible to run the desired computations
for an optimal design and maximin designs using the file “POBE script.m”.

3.1 Main menu

To start the main menu, the user types “pobe” in the command window of MATLAB and presses
the enter key. The current directory in the MATLAB desktop must be the directory containing
the POBE program. The main menu has seven different panels (see Figure 2) which are explained
below.

The first panel “Specify your design and contrasts” is used to specify design characteristics and
the matrix C in Equation (6) for estimation of the effects of interest. The entries here are chosen by
the user depending on the research question of interest. In the second panel “Optimality criteria”
the researcher can choose the A-optimality criterion, which is commonly applied for fMRI studies,
or the D-optimality criterion based on his preference. In the third panel “Specify your costs”
the user can indicate the costs for subjects, for the scanning time and for the whole experiment.
The costs are specified by the resources and facilities which are available for the researcher. In
the fourth panel “Specify your HRF” the user can specify whether he wants to use the standard
double gamma HRF or specify his own HRF parameters, e.g., to handle nonlinearity of the HRF.

In the fifth panel “Specify your variance and correlation parameters” the model parameters for
the error covariance structure, e.g., the autocorrelation parameter, are entered. The variance and
autocorrelation parameters in the fifth panel can be based on knowledge from previous studies or
a pilot study. It is also possible to specify an interval of possible values for the variance ratio of
within-subject variance to between-subject variance and/or an interval of possible values for the
autocorrelation parameter. If such a range is specified, the optimal design is calculated for several
values in this range with steps of 0.01 for the autocorrrelation and steps of 0.1 for the variance
ratio. Additionally, a maximin design can be determined when indicated in the seventh Panel.
If the option “Range for correlation and ratio (nothing fixed)” is chosen, a maximin design will
be calculated automatically since a 2D graph for the optimal number of subjects or cycles based
on the already two-dimensional space for the variance ratio and autocorrelation parameter is not
possible.

The sixth panel “Specify your nuisance terms” is used to describe the nuisance terms in the
nuisance matrix S. The nuisance terms in the sixth panel depend on the low frequency noise which
a researcher wants to use in his model. In the seventh panel “Specify additional outcome results”
the user can choose the calculation of maximin designs or power as additional outcome results.

In the following the buttons, options and data entry fields in the main menu are described in
more detail. The user has to specify these options and the values for the entry fields in order to
determine the optimal design.

General buttons

• Exit : Pushing the button “Exit” will lead to exit of the program POBE after asking a
confirmation from the user about leaving the program.

• Reset : The button “Reset” can be used to clear all entered values in the entry fields in the
main menu of POBE.

• About POBE : After clicking this button, background information about POBE is provided.

Input in first panel “Specify your design and effects of interest”

• Task block length (seconds): The length of task blocks is entered here in seconds.
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Figure 2: Main menu of POBE.
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• Null/Rest block length (seconds): The length of null blocks is entered here in seconds. Null
block length can also be equal to 0 seconds.

• Stimulus onset asynchrony (seconds): The stimulus onset asynchrony is entered here in
seconds. The stimulus onset asynchrony gives the time between two trials in a block.

• TR (seconds): The repetition time (TR) is entered here in seconds. The TR gives the time
between two successive measurement time points, i.e., scans. A measurement refers here to
an fMRI brain scan.

• Number of stimulus types: The number of stimulus types (also commonly called tasks or
conditions) can be entered here.

• Block order : The user can choose in the popup menu between two block orders, that is ABN
or ANBN. These block orders, which for simplicity indicate two stimulus types A and B, are
notations for two types of block order and are irrespective of the number of stimulus types.
Block order ABN means that a cycle of all task blocks is followed by a null block. If block
order ANBN is chosen, each task block will be alternated with a null block in the design.
If the null block length is equal to 0 seconds, both options ABN and ANBN will result in
block order AB.

• Choose effects: Two options can be chosen in the popup menu, that is “Individual stimulus
effects” or “Enter specific contrast matrix”. For the first option “Individual stimulus effects”,
the matrix C in Equation (6) will be set to the identity matrix IQ of size Q, where Q is
the number of stimulus types. When the second option is chosen, the sub-menu in Figure 3
opens for input of the contrast matrix. One row of the matrix corresponds to one stimulus
contrast. The sub-menu contains the push buttons “Save”, “Reset”, “Cancel” and “Help”.
Pushing the button “Save” saves the entered contrast matrix and returns to the main menu
of POBE. The button “Reset” is useful for clearing the entered contrast matrix and entering
a new contrast matrix. If the user does not want to enter a specific contrast matrix and
wants to return to the main menu, the user can click the button “Cancel”. Clicking the
“Help” button provides more information for the user on how the contrast matrix should be
entered.

Figure 3: A sub-menu of POBE to enter the matrix C for the stimulus contrasts of interest.

Input in second panel “Optimality criterion”

• The user can choose between the A- or D-optimality criterion in the menu.

Input in third panel “Specify your costs”
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• Subject costs: The subject costs correspond to the fixed costs per new subject, e.g., recruit-
ment fees, participation fees and time for use of the scanner to obtain structural images,
and can be entered here. Any costs which are related to a subject but not to the effective
functional scanning time should be summarised in the subject costs.

• Scanner costs: The user can enter the costs for use of the fMRI scanner for one hour.

• Total study budget: The total budget for the experiment can be entered here.

Input in fourth panel “Specify your HRF”

• Choose HRF: Two options can be chosen in the popup menu for the HRF, that is “Standard
HRF (double gamma)” or “Enter user defined HRF”. For the first option “Standard HRF
(double gamma)”, the hemodynamic response function will be set to the standard double
gamma function. When the second option is chosen, the sub-menu in Figure 4 opens for
input of the HRF parameters. More information on the HRF is provided in Section 2.1. The
sub-menu contains the push buttons “Save”, “Reset”, “Cancel” and “Help”. Pushing the
button “Save” saves the entered HRF parameters and returns to the main menu of POBE.
The button “Reset” is useful for clearing the entered HRF parameters and specifying new
parameters. If the user does not want to enter a specific HRF parameters and wants to
return to the main menu, the user can click the button “Cancel”. Clicking the “Help”
button provides more information for the user.

Figure 4: A sub-menu of POBE to enter HRF parameters for a user defined hemodynamic response
function.

Input in fifth panel “Specify your variance and correlation parameters”

• Specify whether fixed values or ranges are assumed: The user can choose between five different
options in this popup menu, i.e., “Fixed values (no ranges)”, “Range for correlation (ratio
fixed)”, “Range for ratio (correlation fixed)”,“Range for correlation (ratio fixed) and ratio
(correlation fixed)” and “Range for correlation and ratio (nothing fixed)”. The fourth option
combines the output from the second and third option in one results window. Depending
on the choice the user has to indicate different values for the autocorrelation parameter and
variance ratio.

• Autocorrelation parameter (AR1): The user can firstly specify whether he wants to use
a cross-correlation vector from a previous study so that an autocorrelation matrix from a
previous experiment is applied. This can be done in the popup menu with the options
“Specify” or “Previous study”. If the option “Specify” is chosen, the user has to specify
values for the autocorrelation, e.g., fixed, minimum or maximum values depending on the
choice in the popup menu “Specify whether fixed values or ranges are assumed”. If the option
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“Previous study” is chosen the user has to specify a MATLAB file called “autocorr.mat”,
which contains a vector called “myscannerxc” with the observed cross-correlations from a
previous study over several time points, e.g., 51 time points. Some example files are given
in the folder autocorr files of POBE.

• Variance ratio (within-subject variance to between-subject variance): Based on the choice
for the popup menu “Specify whether fixed values or ranges are assumed”, the user has to
specify a fixed value and/or a minimum and a maximum value for the variance ratio σ2

ϵ /σ
2
q .

• Correlation between random effects: The user can specify a correlation between the random
effects. If the A-optimality criterion and the option “Individual stimulus effects” for the
matrix C are chosen, the random-effects correlation will not influence the optimal design as
the offdiagonal elements of the random-effects correlation matrix D in Equation (6) are not
taken into account for calculation of the A-optimality criterion. For one stimulus type, there
is only one random stimulus effect and the random-effects correlation is also irrelevant.

Input in sixth panel “Specify your nuisance terms”

• Model nuisance: The user can check the box if he/she wants to specify the type of nuisance
terms and the nuisance order. An unchecked box will result in the default nuisance terms
which are a constant signal baseline modelled by the default nuisance matrix S = 1T . The
vector 1T denotes here the T × 1 column vector with only 1 as entries. The default nuisance
terms and default nuisance matrix S = 1T are equivalent to Legendre polynomials of order
0 or discrete cosine transforms of order 0.

• Type of nuisance terms: In the popup menu the user can choose between “Legendre poly-
nomials” and “Discrete cosine transforms”.

• Nuisance order: The user can indicate the nuisance order which corresponds to the number
of Legendre polynomials or discrete cosine transform modelled in the columns of the nuisance
matrix S in Equation (6).

Options to obtain output in seventh panel “Specify additional outcome results”

• Maximin design for autocorrelation range: Depending on the choice in the popup menu
”Specify whether fixed values or ranges are assumed”, the user can indicate by clicking the
box whether a maximin design for the autocorrelation range will be calculated.

• Maximin design for variance ratio range: Depending on the choice in the popup menu
”Specify whether fixed values or ranges are assumed”, it can be specified by the user whether
a maximin design for the variance ratio range should be calculated.

• Calculate power: If only a one dimensional contrast between stimulus effects or only one
stimulus effect is estimated, the user can indicate here whether a power calculation for the
optimal design should be performed. This option can also be used to determine the minimum
budget for a given desired power level. For example, if the obtained power for the given total
costs is too low, the user can raise the total costs until he finds the costs which guarantee
the desired power level. On the other hand, if the obtained power for the given total costs is
higher than necessary, the user could lower the total costs until he finds the minimum costs
to guarantee the desired power level. If a user ticks this box, a new window will be opened
and the user has to enter the effect size, within-subject variance, between-subject variance
and the significance level.

Buttons to obtain output

• Calculate optimal number of subjects and cycles: When this button is pressed, the optimal
number of subjects and cycles will be calculated for fixed values of the autocorrelation and
of the variance ratio or for the ranges of possible values for the autocorrelation and for the
variance ratio.
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It is not necessary to specify the calculation of a maximin design if the option “Range for correlation
and ratio (nothing fixed)” is chosen in the fifth panel. For this choice, a maximin design will be
calculated automatically.

3.2 Output

Depending on the choice in the popup menu “Specify your variance and correlation parameters”,
a certain output window is obtained for the results. The results figures can be saved as MATLAB
figure file, and a file name, e.g., ResultsFigure692011-1142.fig, will be automatically created by
using the date and time of file creation. Furthermore, input values and the corresponding results
for the optimal design(s) or maximin design can be saved as an Excel file. The different results
windows will be discussed in Section 4 by an application example of POBE.

4 Example

4.1 Input

In this section, the program POBE is illustrated by one example. It is assumed that the block
length of task and null blocks is 15 seconds which is in the common range of 10 to 60 seconds for
block lengths. Furthermore, the SOA and TR are set equal to 2.5 s. The number of stimulus types
is 1 and the block order is chosen to be ABN which is for one stimulus type equivalent to block
order ANBN. The menu “Choose effects” is set to individual stimulus effects which means that
the parameter βG in Equation (3), the group effects of the stimuli, is estimated. Furthermore,
a total study budget of e 6000 is chosen with subject costs of e 200 and costs per hour scanner
time of e 400. Furthermore, the A-optimality criterion and the standard hemodynamic response
function are chosen.

To specify the variance and correlation parameters, information from previous studies is needed.
For this purpose, the group analysis results in Mumford and Nichols (2008) are chosen as all
necessary parameter estimates for the model parameters, that is between-subject variance, within-
subject variance and autocorrelation parameters, are presented. Mumford and Nichols (2008) used
the FIAC single subject block design data to estimate these parameter values. Details about the
experiment can be found in Mumford and Nichols (2008) and Dehaene-Lambertz et al. (2006).
Transferring their SPM2 estimates into an AR1 structure, leads to the following values. The
estimated parameters for the AR1 autocorrelation varied from 0.12 to 0.33 with a mean of 0.25.
The within-subject to between-subject variance ratio was between 2.06 and 13.69 with a mean of
6.16. The random-effects correlation is not relevant as only one stimulus type is assumed. For
the nuisance terms, discrete cosine transforms as implemented in SPM2 with order 3 are used.
The input values can be seen in Figure 5a. To calculate the power of the optimal design, we will
assume an effect size in percent signal change ∆ = 0.5%, σ2

ϵ = 2.464, σ2
q = 0.4 and a significance

level (type I error) of 0.005 (Figure 5b.)

4.2 Output

Depending on the option chosen in the popup menu ”Specify whether fixed values or ranges are
assumed” different results windows appear (see Figure 6). As the results windows for option
“Range for correlation (ratio fixed)”, option “Range for ratio (correlation fixed)”, option “Range
for correlation (ratio fixed) and ratio (correlation fixed)” and option “Range for correlation and
ratio (nothing fixed)” are very similar, only the results window for option “Range for correlation
(ratio fixed)” is presented here.

When option “Fixed values (no ranges)” is chosen, the results window in Figure 6a appears.
The optimal design for the given input in Figure 5a can then be inferred from Figure 6a. The
optimal number of subjects and cycles, the exact experimental costs and the scanning time per
subject in minutes are all indicated in Figure 6a. For the option “Fixed values (no ranges)”, a fixed
autocorrelation of 0.25 and a fixed variance ratio of 6.16 are used for calculation of the optimal
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(a) Entries in POBE main menu.

(b) Entries in POBE power menu.

Figure 5: Entries in POBE for example.
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number of subjects and cycles. Given the input as shown in Figure 5a, the optimal number of
subjects equals 26 and the optimal number of cycles equals 9. This results in total experimental
costs of e 5980 and in a scanning time of 4.5 min per subject. The power of the design is almost
90%. The user can save the results by clicking the button “Save results”. An Excel file will be
created in the current MATLAB folder, i.e., the folder of the program POBE. This Excel file
contains the input factors and the results for the optimal design (see Figure 7).

If the option “Range for correlation (ratio fixed)” is chosen by the user, the results window in
Figure 6b is displayed. The window “POBE: optimal results for autocorrelation range” contains
two graphs which show the optimal number of cycles and subjects for the given autocorrelation
range. In Figure 5a the range 0.12-0.33 was indicated by specifying the minimum value of auto-
correlation equal to 0.12 and the maximum value equal to 0.33. It can be seen in Figure 6b that
for a lower value of autocorrelation the optimal number of cycles is 6 and the optimal number
of subjects is 27. For a higher value of the autocorrelation the optimal number of cycles is 9
and the optimal number of subjects is 26. The panel in Figure 6b below the graphs shows the
maximin design which has 6 cycles and 27 subjects resulting in total experimental costs of e 5940
and a scanning time of 3 minutes for each subject. The maximin value is almost 1 (0.9954) which
indicates that the maximin design is efficient over the whole range of autocorrelation. A similar
results window as in Figure 6b is obtained when the option “Range for ratio (correlation fixed)”
is chosen. The graphs for this option will differ from the graphs in Figure 6b by display of the
variance ratio range on the x-axis instead of the autocorrelation range as in Figure 6b. Further-
more, when option “Range for correlation (ratio fixed) and ratio (correlation fixed)” is chosen,
four graphs are shown with the autocorrelation or the variance ratio on the x-axis and the optimal
number of subjects or the optimal number of cycles on the y-axis. For the option “Range for
correlation and ratio (nothing fixed)” a result window similar to Figure 6a is displayed and the
maximin design is given. No graphs are given since the presentation is complicated by the fact
that a three-dimensional graph would need to be displayed.

The user can decide to save the figures or to save the maximin design by pressing the button
“Save figures” or ”Save maximin design” (see Figure 6b). These buttons are also displayed in
the results window after choosing a range for the variance ratio or in the results windows after
choosing a range for the autocorrelation and for the variance ratio. When the user saves the
figures, a MATLAB figure file with file extension .fig is created containing the same graphs as in
Figure 6b and the maximin design if applicable but not the push buttons “Save figures” and “Save
maximin design”. The MATLAB figure file can be found in the folder of POBE. When saving
the maximin designs, an Excel file is created in the current MATLAB folder, i.e., the folder of
POBE. This Excel file is similar to the Excel file shown in Figure 7 except that for the input this
Excel file contains minimum and maximum autocorrelation instead of autocorrelation and for the
results it contains the maximin design instead of the optimal design. For the options “Range for
ratio (correlation fixed)”, option “Range for correlation (ratio fixed) and ratio (correlation fixed)”
and option “Range for correlation and ratio (nothing fixed)” in the popup menu “Specify whether
fixed values or ranges are assumed”, the user can also create Excel files with the relevant input
factors and obtained maximin designs.

5 Conclusion

Multi-subject blocked fMRI experiments are expensive. Therefore, it is necessary to determine
optimal designs which maximise design efficiency within given costs. This paper explains the use of
the program POBE which helps researcher to determine the optimal number of cycles and subjects
for a blocked experiment. The user can specify the characteristics of the design and indicate values
for model parameters. If the researcher is uncertain about the specific value of a model parameter,
a maximin design, which is robust against misspecification of the model parameter, is determined.
An example is provided for illustration of the program.
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(a) Results window of POBE containing optimal results.

(b) Results window of POBE containing optimal results for autocorrelation range.

Figure 6: Results windows of POBE.
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Figure 7: Excel file of saved input values and results obtained for the input values.
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