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Abstract. This paper describes an algorithm for unbiased construction
of white matter (WM) atlases using full information available to diffu-
sion tensor (DT) images. The key component of the proposed algorithm
is a novel DT image registration method that leverages metrics compar-
ing tensors as a whole and optimizes tensor orientation explicitly. The
problem of unbiased atlas construction is formulated using the approach
proposed by Joshi et al., i.e., the unbiased WM atlas is determined by
finding the mappings that best match the atlas to the images in the
population and have the least amount of deformation. We show how the
proposed registration algorithm can be adapted to approximately find
the optimal atlas. The utility of the proposed approach is demonstrated
by constructing a WM atlas of 13 subjects. The presented DT registra-
tion method is also compared to the approach of matching DT images
by aligning their fractional anisotropy images using large-deformation
image registration methods. Our results suggest that using full tensor
information can better align the orientations of WM fiber bundles.

1 Introduction

Diffusion tensor imaging (DTI) is a unique imaging technique that probes micro-
scopic tissue properties by measuring local diffusion of water molecules [1]. Its
demonstrated ability to depict in vivo the intricate architecture of white matter
(WM) [2] has made it an invaluable tool for furthering our understanding of WM
both in normal populations and in populations with brain disorders. Wakana et
al. [3] provided a powerful illustration of this new insight into WM by build-
ing an annotated WM atlas delineated via semi-automatic tractography-based
segmentation on a single-subject anatomy.

From the perspective of computational neuroanatomy, DTI also offers an ex-
citing opportunity for the construction of an unbiased WM atlas, i.e., a standard
coordinate system not biased by the anatomy of a particular subject but rep-
resenting the complex variability within the whole population of interest. Such
atlas can serve as a deformable template, which will enable detailed atlas in-
formation to be mapped to individual subject spaces [4]. Another important
application of such atlas is in identifying as well as localizing WM differences
across populations using DTI. In this scenario, individual images are mapped



2

to the stereotactic space defined by the atlas, thereby removing shape differ-
ences among the individuals. On one hand, any change in microstructural tissue
properties of shared anatomies, e.g., the mean rate of diffusion or the diffu-
sion anisotropy, can be examined. On the other hand, the shape differences or
variabilities encoded in the transformations that define the mapping between
individual to the atlas are essential for the understanding of volumetric changes
in WM structures.

The key element in the construction of such a WM atlas is an effective image
registration algorithm that establishes accurate mapping of common WM struc-
tures between images. Goodlett et al. [5] demonstrated the advantage of using
large-deformation registration over affine registration for this purpose. The au-
thors aligned WM structures by registering the scalar images derived from the
fractional anisotropy (FA) images that were in turn derived from DT images. In
this paper we describe the construction of such a WM atlas using a novel DT reg-
istration algorithm. Compared to [5], the registration algorithm proposed here
takes full advantage of the relevant information encoded in DT images, partic-
ularly the tensor orientation, thus enabling more faithful alignment of different
WM tracts, as first demonstrated in [6].

The rest of the paper is organized as follows. Sec. 2 describes the proposed
DT registration algorithm while Sec. 3 gives details of its application to WM
atlas construction. In Sec. 4, the preliminary results of applying the proposed
procedure to a large database are presented and we report the quantitative
analysis of the behavior and the performance of the proposed DT registration
algorithm. A comparison of aligning DT images using the proposed registration
algorithm to the approach of aligning their FA images using large-deformation
registration methods suggest that using full tensor information can better align
the orientations of WM fiber bundles. Future directions are discussed in Sec. 5.

2 Diffusion Tensor Image Registration

The DT image registration algorithm proposed here is an extension of the de-
formable DT image registration method that we recently proposed in [7]. The
algorithm described in [7] models transformations as piecewise affine and lever-
ages full tensor-based similarity metrics while optimizing tensor orientation ex-
plicitly. In addition, the derivatives of the registration cost function are analytic,
enabling both fast and accurate derivative-based optimization. However, the al-
gorithm, by design, is most accurate when deformation is not large, thus can
render less optimal results when deformation becomes large. The extension pro-
posed here aims to address this limitation of the algorithm without forgoing its
advantages. Below we first summarize the algorithm in [7] and then describe our
specific enhancements.

2.1 Piecewise Affine Algorithm

The algorithm in [7] approximates smooth transformations using a dense piece-
wise affine parametrization which is sufficient when the required deformations
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are not large. The dense piecewise affine parametrization effectively divides the
template space into uniform regions and parametrizes the transformation within
each region by an affine transformation. The registration cost function consists
of an image matching term (the likelihood) and a transformation smoothness
term (the prior). The image term is the summation of the region-wise tensor
image difference determined via a particular choice of tensor metric ‖.‖. For a
particular region Ω, the linear part of the associated affine transformation is
parametrized using the matrix polar decomposition, such that x 7→ (QS)x + T,
where Q is a special orthogonal matrix representing the pure rotation, S is a
symmetric positive definite matrix representing the pure deformation and T is
the translation vector. By using the finite strain tensor reorientation [8], the
image term is formulated as

φ(p) =
∫

Ω

‖Is((QS)x + T)−QIt(x)QT‖2 dx , (1)

where It and Is are the template (fixed) and subject (moving) DT images re-
spectively, and p denotes the 12 affine parameters. The overal smoothness of the
piecewise affine transformation is regularized by penalizing the discontinuities
across region boundaries. For two adjacent regions Ωi and Ωj with the asso-
ciated affine transformations being Fi and Fj respectively, the discontinuity is
formulated as ∫

Ωi∩Ωj

‖Fi(x)− Fj(x)‖dx, (2)

where ‖.‖ denotes the vector norm. The dense piecewise affine approximation to
the underlying transformation is estimated and refined in a hierarchical frame-
work by beginning with coarse subdivision of template space then continuing
with finer subdivision. The transformation estimated at the finest level is inter-
polated using the standard approach [9] to generate a smooth warp field which
is then used to deform the subject into the space of the template with the PPD
reorientation strategy [8].

Although the algorithm is applicable for general tensor similarity measures,
we chose to use the tensor metric that measures the L2 distance between the
anisotropic part of the apparent diffusion profiles associated with the DTs that
we first described in [7]. Under this metric, the distance between two DTs D1

and D2 is equal to √
8π

15
(‖D1 −D2‖2

C − 1
3
Tr2(D1 −D2)) , (3)

where ‖D1−D2‖C is the Euclidean distance between the two tensors and equal
to

√
Tr((D1 −D2)2). This choice is consistent with the seminal observations

by Pierpaoli et al in [2] that in human brain the isotropic part of diffusion are
similar in values in grey and white matter regions. Hence, a metric focusing on
identifying differences in anisotropic diffusion can be more optimal by ignoring
differences in isotropic diffusion that are likely a result of noise or partial volume
contamination in the data.
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2.2 Enhancements to the Piecewise Affine Algorithm

The proposed extension handles larger deformations by both enhancing the
piecewise affine algorithm itself and by iteratively composing smaller incremental
deformations estimated using the enhanced piecewise affine algorithm.

The enhancement to the piecewise affine algorithm aims to ensure that result-
ing deformation fields have physically meaningful Jacobian (matrix) determinant
values, i.e., being positive and not close to be singular. The affine parametriza-
tion proposed in [7] parametrizes the pure deformation S using its six linearly
independent components. This parametrization does not forbid S to have neg-
ative determinant and this undesirable scenario did occur in practice in our
experimentation. We propose to instead parametrize the pure deformation S
using its Cholesky decomposition, i.e., S = LLT, where L is a lower triangular
matrix. In this scheme, S is now parametrized by the six non-zero elements in L
and is guaranteed to be positive semidefinite. To penalize Jacobian determinant
close to be singular, we add a Jacobian prior term adopted from [10], which is

Tr(S2 + S−2 − 2I) =
3∑

i=1

(s2
i + s−2

i − 2), (4)

where si are the ith eigenvalues of S. Observe that this prior term is zero when
S is the identity matrix and increases when any of the eigenvalues si deviates
from 1.

Our second strategy for better handling large deformations is to use the
enhanced piecewise affine algorithm to incrementally estimate the underlying
true deformation. Given N successively determined incremental deformations
{Pi}N

i=1, the final deformation is determined by their compositions, i.e., x 7→
P1 ◦ P2 ◦ ... ◦ Pi ◦ ... ◦ PN−1 ◦ PN (x). During each incremental estimation, we
set the weightings of both prior terms to stringent values such that large defor-
mation is penalized and the incremental dense piecewise affine transformation
is sufficiently close to the corresponding interpolated smooth deformation. The
sufficient values for these weights can be empirically determined for a particu-
lar dataset. However, given that the DTs take physical values and overall don’t
differ significantly across different datasets, we have found in practice that these
weights, once determined for one dataset, worked well for others. The weightings
that we have found worked well in practice are 0.08 for the smoothness prior and
0.2 for the Jacobian prior. The number of incremental estimation steps that we
found sufficient is between 5 and 6. Each incremental estimate takes about 10
mins or less on a modern 3.0GHz Intel Xeon processor and the total estimation
usually takes less than one hour.

3 Unbiased White Matter Atlas Construction

We formulate the unbiased atlas construction problem according to the approach
proposed by Joshi et al. in [11]. Joshi et al. stated the unbiased atlas construc-
tion problem as estimating an image that requires the minimum amount of
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deformation to map into every image in the population. In our context, given a
population of N DT images {Ii}N

i=1, the atlas estimation problem can then be
defined as

{Ĥi, Î} = arg min
Hi,I

N∑
i=1

(
∫

R3
‖Ii ◦Hi(x)− I(x)‖2dx + D(Hi)), (5)

where Hi is the deformation applied to the image Ii and D(Hi) is some appro-
priate metric quantifying the amount of deformation associated with Hi.

It can be shown that under the tensor metric Eqn. 3, the image that minimizes
Eqn. 5, when the transformations {Hi}N

i=1 are fixed, is simply

Î(x) =
1
N

N∑
i=1

Ii ◦Hi(x). (6)

This result is completely analogous to the result in [11] for the sum of squared
error scalar image similarity metric, which allows us to use an algorithm similar
to the iterative greedy method used to minimize Eqn. 5 in [11].

Our iterative algorithm is as follows. At iteration m,m ≥ 0, the atlas esti-
mate Î(m) is estimated using Eqn. 6 with Hi = H

(m)
i = P

(0)
i ◦ P

(1)
i ◦ ...P

(m)
i (x)

where P
(m)
i is the estimated incremental dense piecewise affine transformation

for the ith image at iteration m. When m = 0, {P (0)
i }N

i=1 are initialized to the
identity transformation and the initial atlas Î(0) is computed as an average of
the original subject DT images {Ii}N

i=1. When m ≥ 1, {P (m)
i }N

i=1 are estimated
by registering the DT images {Ii◦H

(m−1)
i }N

i=1 to the atlas estimate Î(m−1) using
the piecewise affine algorithm described in Sec. 2. In this implementation, the
amount of deformation D(Hi) is approximated via the two prior terms discussed
in Sec. 2. For our current implementation, we have found that the sufficient num-
ber of incremental iterations N for the estimated atlas to converge is around 6.
The convergence is checked by estimating ‖Î(m)− Î(m−1)‖. In practice, this pro-
cedure is applied to the subject images after they have been corrected for global
size and pose differences using affine registration.

4 Experiments and Results

We demonstrate the performance of the proposed algorithm by applying it to
construct a WM atlas from 13 DT images drawn from a large MR imaging
database. MRI was performed on a Philips 3-Tesla system with maximum gra-
dient strength of 62 mT/m on each independent axis and slew rate of 100
mT/m/ms on each axis using a 6-channel phased array head coil. Diffusion-
weighted images were acquired with a single-shot echo-planar diffusion-weighted
sequence with 15 non-collinear gradient directions @ b = 1000 s/mm2 with
a SENSE factor of 2. The additional imaging parameters are as follows: TR
12000ms, TE 51ms, slice thickness 2mm, field of view 224mm, matrix 128 x 128,
resulting in voxel size 1.75 x 1.75 x 2 mm3.
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We applied the proposed algorithm to the DT images reconstructed from
the diffusion-weighted images using the standard linear regression [1]. The atlas
constructed is shown in fig. 1 along with the initial atlas constructed from affinely
aligned images. Compared to the initial atlas (top row), the final atlas (bottom
row) has considerably sharper edge features as well as much richer details in the
cortical regions.

Fig. 1. Comparison of the atlas constructed from affine registered images (top row)
to the atlas constructed from registered images using the proposed algorithm (bottom
row). The regions with more prounounced differences are highlighted with arrows. The
RGB image encodes the principal diffusion directionss: red for left-right, green for
anterior-posterior and blue for inferior-superior [12].

To demonstrate the behavior and the performance of the enhanced piece-
wise affine registration algorithm, the algorithm is used to register the affine
registered images to the constructed unbiased atlas with 6 incremental steps.
We quantitatively assessed the overall quality of spatial normalization after each
incremental step using two voxelwise statistics: normalized FA standard devia-
tion σ̄FA and dyadic coherence κ. Since diffusion anisotropy and the dominant
direction of diffusion are two features that account for most of the variations in
WM [2], misalignment that renders different WM structures being mapped to
one another should yield large voxelwise variations in either one or both of the
features. The two voxelwise statistics directly assess these variations and hence
can be indicative of misalignment of WM structures. Given a set of DTs sampled
at some voxel from the normalized images after a particular incremental step,
σ̄FA is defined as the ratio of the standard deviation and mean of the FA values
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of these DTs, and κ [13] takes values that range from 0 to 1 (0 for randomly ori-
ented directions and 1 for identically oriented directions). These statistics were
computed for the voxels with FA > 0.2 in the atlas. The resulting statistical maps
from different incremental steps were compared using their respective empirical
cumulative distribution functions (CDF). The method producing better spatial
alignment should result in more reduction in σ̄FA and larger increase in κ, which
in turn will be reflected as its σ̄FA and κ CDFs being more to the left and to the
right, respectively. The performance of the algorithm is compared against both
the initial affine alignment and the alignment rendered using a large-deformation
scalar registration method which optimizes a cross-correlation metric under the
constraints of a diffeomorphic transformation model in multi-resolution and sym-
metric fashion [14]. The large-deformation algorithm is applied to normalize the
FA images of the affine-aligned DT images to the FA image of the unbiased DT
atlas. The results are shown in Fig. 2. It shows that, by taking incremental steps,
the proposed algorithm is able to gradually improve the quality of normalization
with respect to both σ̄FA and κ. With respect to σ̄FA, the proposed algorithm
can perform almost on par with the large-deformation algorithm registering FA
images. With respect to κ, the proposed algorithm performs substantially bet-
ter than the large-deformation algorithm, reflecting the benefit of aligning DT
images using full tensor metrics.
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Fig. 2. The empirical CDFs of both σ̄FA and κ derived from the initial affine aligned
images (Initial), the images aligned using the large-deformation FA registration (FA),
and the images aligned using the proposed algorithm at 3 stages (Tensor Step 2, 4 and
6).

5 Discussion

In this paper we have described an algorithm for unbiased WM atlas construction
that leverages a novel high-dimensional DT registration algorithm. The strength
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of the proposed algorithm lies in its ability to optimally align WM structures.
The current approach however is limited in its ability to accurately assess the
amount of deformation. We plan to address this issue by leveraging the recent
work by Arsigny et al. [15], which enables the construction of diffeomorphic
maps from piecewise affine transformations. The ability to create diffeomorphic
interpolation of the estimated piecewise affine transformations will afford us the
principled approach to estimate the amount of deformation in the metric space
of diffeomorphisms.
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