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Abstract

In this paper, we present a novel deformable registration algorithm for diffusion tensor MR images that enables explicit optimization
of tensor reorientation. The optimization seeks a piecewise affine transformation that divides the image domain into uniform regions and
transform each region affinely. The objective function captures both the image similarity and the smoothness of the transformation
across region boundaries. The image similarity enables explicit orientation optimization by incorporating tensor reorientation, which
is necessary for warping diffusion tensor images. The objective function is formulated in a way that allows explicit implementation of
analytic derivatives to drive fast and accurate optimization using the conjugate gradient method. By explicitly optimizing tensor reori-
entation, the algorithm is designed to take advantage of similarity measures comparing tensors as a whole. The optimal transformation is
hierarchically refined in a subdivision framework. A comparison with affine registration for inter-subject normalization of 8 subjects
shows that the proposed algorithm improves the alignment of several major white matter structures examined: the anterior thalamic radi-
ations, the inferior fronto-occipital fasciculi, the corticospinal/corticobulbar tracts and the genu and the splenium of the corpus callosum.
The alignment of white matter structures is assessed using a novel scheme of computing distances between the corresponding fiber bun-
dles derived from tractography.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI)
(Basser et al., 1994) is a water diffusion imaging technique
used to provide unique insight into the white matter orga-
nization in human brains (Jones et al., 1999; Wakana et al.,
2004). Water diffusion can reveal certain microscopic struc-
ture of the underlying tissue, particularly the presence of
fibrous structures. For instance, in white matter, which
consists of packed axon fibers, diffusion is anisotropic
due to restricted movement of water molecules perpendic-
ular to the axon fibers; the direction along which water dif-
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fuses most freely coincides with the orientation of the
fibers. Diffusion tensor images contain at each voxel a sym-
metric 2nd-order Cartesian tensor that allows us to mea-
sure both the water diffusion anisotropy and the
preferred diffusion orientation. This unique ability to reveal
the orientation of fiber bundles makes diffusion tensor
images an ideal choice for understanding and analyzing
white matter structures.

Spatial normalization of groups of diffusion tensor
images acquired from different subjects enables accurate
mapping of characteristics of the diffusion tensor, such as
diffusion anisotropy and orientation, within these images.
It has important applications in assisting clinical studies
into the variation of measurements derived from the diffu-
sion tensor over normal and patient population groups (see
Park et al. (2004) for an example). Image registration of
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diffusion tensor images plays a key role in realizing spatial
normalization. Compared to registering scalar images, the
registration of diffusion tensor images is particularly chal-
lenging not only due to the multi-dimensionality of the
data, but also because one must ensure that the tensor ori-
entations remain consistent with the anatomy after image
transformations (Alexander et al., 2001). Earlier diffusion
tensor image registration techniques circumvent tensor
reorientation by registering scalar images derived from dif-
fusion tensor images (Jones et al., 2002; Guimond et al.,
2002), thus discarding the orientation component of the
data. Some other methods register actual tensor images
but not reorienting the tensors during registration (Alexan-
der and Gee, 2000; Ruiz-Alzola et al., 2002), thus introduc-
ing inaccuracies in image matching. Later Park et al. (2003)
showed that using diffusion tensors as a whole improved
the quality of registration by better matching the diffusion
tensors orientation information; but their method only
applied tensor reorientation iteratively and tensor reorien-
tation was not explicitly optimized. Curran and Alexander
(2003) then demonstrated that explicitly optimizing tensor
reorientation during affine registration of synthetic images
improved image matching. However their method (Curran
and Alexander, 2004) is not derivative-based and their reg-
istration optimization tends to have difficulties with local
minima. We proposed an affine registration algorithm that
both explicitly optimizes tensor reorientation and has a
novel derivative-based formulation in Zhang et al. (2004).
Our synthetic examples show that our derivative-based
method is faster and reaches global minima more consis-
tently than the method not using derivatives. Most
recently, Cao et al. (2005) developed a large deformation
diffeomorphic registration algorithm for vector fields. The
algorithm was applied to register diffusion tensor images
by matching their corresponding principal eigenvectors.
A more complete review of the literature can be found in
Gee and Alexander (2005).

In this paper, we describe a novel algorithm for deform-
able registration of diffusion tensor images that incorpo-
rates explicit optimization of tensor reorientation in an
analytic manner. The optimization seeks an optimal defor-
mation from the family of piecewise affine transformations
that divide the image domain into uniform regions and
transform each region affinely. The objective function has
terms sensitive to both the image similarity and the
smoothness of the transformation across contiguous
regions. The objective function has analytic derivatives
and we use the conjugate gradient method for fast and
accurate optimization. By explicitly optimizing tensor
reorientation, the algorithm is designed to take advantage
of similarity measures comparing tensors as a whole. In a
subdivision framework, we hierarchically refine the optimal
piecewise affine transformation. The proposed algorithm
was applied to inter-subject registration. The results were
evaluated using a novel scheme for assessing the alignment
of anatomically corresponding white matter structures. We
showed that our deformable algorithm improved the align-
ment of a number of white matter structures examined
compared to affine registration. The statistical properties
of the registered images as a whole were also analyzed
and the result is consistent with the one from evaluating
white matter alignment of the individual image.

In Section 2, we will review the properties of diffusion
tensor images and the general issues of diffusion tensor
image registration. Our method is then presented in Section
3. The details of its evaluation are discussed next in Section
6, followed by the results of the evaluation in Section 5. In
Section 6, we discuss the implication of our results, and
future directions to take to address the limitations of this
work. We conclude with a summary of the contributions
in Section 7.

2. Background

2.1. Diffusion tensor MRI

Diffusion tensor MRI characterizes the water diffusion
by measuring the apparent diffusion tensor in each voxel
of an MRI volume. The method assumes that water mole-
cules move according to a simple anisotropic diffusion pro-
cess so that the displacement x of a water molecule over a
fixed time t is modeled as a random variable that follows
the multivariate normal distribution p with the mean at
the origin and covariance 2tD, where D is the diffusion ten-
sor, a symmetric and positive-definite (SPD) 3-by-3 matrix.

Diffusion-weighted MRI sensitizes the MRI measure-
ment to diffusion by introducing diffusion-weighting gradi-
ent-pulses to standard sequences. The diffusion-sensitized
sequence allows the sampling of the apparent diffusion
coefficients (ADC) along the directions of the gradient-
pulses. Hereafter, we will use the term ‘‘ADC profile’’ to
refer to the ADCs as a function of spatial direction.
Because D has six independent components, measurements
from a minimum of six independent directions have to be
acquired. The apparent diffusion tensor D is the best fit ten-
sor to the sampled ADC profile using the Gaussian diffu-
sion model. Under the Gaussian diffusion model, the
ADC profile, dDðk̂Þ, and the diffusion tensor, D, are related
by the equation

dDðk̂Þ ¼ k̂TDk̂; ð1Þ
where k̂ is a unit vector.

The diffusion tensor provides estimates of the mean diffu-
sivity, anisotropy and dominant orientation of diffusion. The
eigenvalues k1 P k2 P k3 and corresponding eigenvectors
{ei}i=1,2,3 of D are convenient for establishing these esti-
mates. The mean diffusivity, the ADCs averaged over all
the spatial directions, is proportional to the mean squared
displacement of water molecules which indicates the mobil-
ity of water molecules. The mean diffusivity is equal to one
third of the trace of the diffusion tensor TrðDÞ ¼

P3
i¼1ki.

Fig. 1(b) maps Tr(D) over an axial slice through a healthy
human brain with the corresponding slice through the T1-
weighted volume of the same individual shown in Fig. 1(a).



Fig. 1. The axial slice 24 of the diffusion tensor image chosen as the template in this study. The T1-weighted image, the trace, the FA and the color-coded
principal eigenvector maps are shown in the panels (a), (b), (c) and (d) respectively. In (d), the directions encoded by each color channel are mediolateral
(left to right) for red, anteroposterior (front to back) for green and superoinferior (top to bottom) for blue. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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The values of Tr(D) are the highest in cerebral spinal fluid,
e.g., in the ventricles, where the water diffuses most freely.
The anisotropy of diffusion can be derived from the shape
of the distribution p. The Gaussian distribution has ellipsoi-
dal contours and the relative lengths of the major axes of
the ellipsoids are proportional to the square roots of the
eigenvalues. The differences in the eigenvalues reflect the
anisotropy. A commonly used measure is the fractional
anisotropy (FA)

m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

P3
i¼1

ki � 1
3
TrðDÞ

� �2

P3
i¼1

k2
i

vuuuuuut ; ð2Þ

which is the normalized standard deviation of the eigen-
values. The values of m vary from 0 to 1 with the higher val-
ues corresponding to greater diffusion anisotropy. Fig. 1(c)
shows the FA map of the same slice as in Fig. 1(b). The
higher values of m are found in the white matter regions
which contain densely packed fiber bundles that cause
anisotropic diffusion by restricting water movement along
directions perpendicular to the fiber bundles. In the regions
where the underlying fiber bundles have similar orienta-
tion, water molecules move preferentially along the orien-
tation of the fiber bundles. The distribution p thus has
prolate (cigar-shaped) ellipsoidal contours and D has the
eigenvalues k1� k2 � k3. The eigenvector e1, the principal
eigenvector, provides an estimate of the fiber direction. To
visualize fiber orientations, a popular method (Pajevic and
Pierpaoli, 1999) is to use RGB vectors proportional to the
fractional anisotropy weighted principal eigenvectors.
Fig. 1(d) shows such a color map corresponding to the
same slice as in Fig. 1(b). The orientation of the fiber bun-
dles underlying the white matter that appears homoge-
neous in the T1-weighted image (Fig. 1(a)) is revealed in
details, demonstrating the power of DT-MRI.

DT-MRI has its limitations however. In particular,
around the regions where two fiber bundles cross, the dis-
tribution p has the oblate (pancake-shaped) ellipsoidal con-
tours with the eigenvalues k1 � k2� k3. Dominant fiber
orientations in this case can not be discerned without using
more general models of molecular displacement (see Alex-
ander (2005) for a survey).

2.2. Registration of diffusion tensor images

Using diffusion tensor data, registration routines that
are capable of matching orientation promise to align white
matter in a manner that is consistent with its inherent orga-
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Fig. 3. A 2D illustration of the derivation of the image similarity for two
diffusion tensor images.
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nization. Registration of these images presents several
unique challenges which we will discuss below while for-
mally formulating the registration problem.

Similar to any other registration task (Maintz and
Viergever, 1998), diffusion tensor image registration can
be formulated as an optimization problem of finding an
optimal transformation v within some image transforma-
tion space V, such that, for two input images, It (the tem-
plate) and Is (the subject), a measure of similarity /ðI0t; IsÞ
is optimized, with I0t being the image warped from It by v.
For scalar-valued images, image transformations merely
change the location of each point x, i.e., I0tðvðxÞÞ ¼ ItðxÞ.
Image warping is less simple for diffusion tensor images.
Transformations of diffusion tensor images also change
the orientation of diffusion tensors (Alexander et al.,
2001), i.e., the relation between the template It and the
warped template I0t is instead

I0tðvðxÞÞ ¼ R½ItðxÞ�;
where R denotes some operator that accounts for the
change in orientation of diffusion tensors induced by the
transformation v. The reorientation operator R needs to
ensure that the orientation of diffusion tensors remains
consistent with the anatomy after an image transformation.
This is illustrated in Fig. 2. Fig. 2(a) shows schematically
an anisotropic region in a diffusion tensor image. Figs.
2(b) and (c) show the same slice after a 30� rotation about
z-axis without and with tensor reorientation. Observe that
after applying reorientation (rotating each tensor by 30�),
the original pattern of tensor orientation is recovered from
the one that is disrupted in Fig. 2(b).

Finding suitable similarity measures for diffusion ten-
sors is the second challenge for diffusion tensor image reg-
istration. A numerical estimate of the image similarity / is
typically computed by comparing the data values at corre-
sponding points in the two images, It and Is. In the case of
diffusion tensor images, a comparative measure of similar-
ity between diffusion tensors is required. To fully exploit
the information in diffusion tensor images, we need similar-
ity measures that are sensitive to all aspects of the diffusion
tensor including size, shape and, most importantly, orienta-
tion. Assuming d(Æ,Æ) denotes such a similarity measure
a b
Fig. 2. Diffusion tensor reorientation. Panel (a) shows schematically an axial sl
same slice after a 30� rotation about the z-axis with no reorientation of the diffu
tensor transformed by the same rotation.
between diffusion tensors, the image similarity is the sum
of squares of the similarities of the diffusion tensors in cor-
responding voxels:

/ðIt; Is; vÞ ¼
Z

X
d2ðI0tðvðxÞÞ; IsðvðxÞÞÞdx

¼
Z

X
d2ðR½ItðxÞ�; IsðvðxÞÞÞdx: ð3Þ

This is illustrated in Fig. 3.
To model image differences that arise from complex

development or anatomical variability, deformable regis-
tration that employs transformation models of high
degrees of freedom is required (Lester and Arridge,
1999). However, because the similarity functional /
becomes fundamentally under-constrained, a regulariza-
tion functional w(v) is generally introduced to address the
ill-posedness of the problem. The optimization problem
becomes

arg min
v2V
ð/ðIt; Is; vÞ þ wðvÞÞ; ð4Þ

which, in general, is highly non-linear. The high degrees of
freedom of the transformation model results in a solution
space of large dimension. Non-linear optimization of this
kind can be solved both faster and more accurately when
the objective function has analytic derivatives that we can
implement explicitly to guide the optimization (Press
et al., 1993).
c
ice in an anisotropic region of a diffusion tensor image. Panel (b) shows the
sion tensors. Panel (c) shows the slice after the same rotation, but with each
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3. Method

Our deformable registration algorithm for diffusion
tensor images enables explicit optimization of tensor reori-
entation. Explicit optimization of tensor reorientation
allows us to take advantage of similarity measures compar-
ing full tensors. Our objective function has analytic deriva-
tives which enables faster and more accurate optimization.
In the following, we begin by reviewing the known diffu-
sion tensor similarity measures with an emphasis on the
ones comparing full tensors that can benefit from our algo-
rithm. Then we review the tensor reorientation formulation
essential for understanding our algorithm. Next we present
the core affine registration formulation that enables explicit
analytic tensor reorientation optimization. Finally we dis-
cuss the incorporation of the smoothness term for regular-
izing the solution.

3.1. Similarity measures of diffusion tensors

Different measures for comparing diffusion tensors have
been proposed in the literature (Alexander and Gee, 2000).
The most simple ones compare transformation-invariant
scalar quantities such as Tr(D) or fractional anisotropy m.
Although such scalar values permit the use of traditional
intensity-based registration methods, they ignore the rich
orientation information encoded in diffusion tensors. An
alternative is to base a similarity measure on the compari-
son of all tensor elements. Mathematically we can con-
struct such similarity measures by equipping the vector
space of tensors with an inner product ÆÆ,Ææ. The induced
norm iÆi of the resulting metric space is then a natural
choice for measuring tensor similarities. The most com-
monly used diffusion tensor similarity measure is the
Euclidean distance between two tensors defined as

kD1 �D2kC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrððD1 �D2Þ2Þ

q
, induced by the Cartesian

tensor inner product ÆD1,D2æC = Tr(D1D2).
In Zhang et al. (2004), we proposed a novel inner prod-

uct that induces a similarity measure that is based on com-
paring ADC profiles. Since diffusion tensors are summaries
of the ADC profiles within the voxels under consideration,
we expect that a metric formulated using ADC profiles to
perform as well or better than full tensor metrics. By com-
paring ADC profiles directly, our proposed measure can be
applied both to diffusion tensors and to higher-order mod-
els of diffusion. An ADC profile is formally defined as
dðk̂Þ : S2 ! Rþ, a positive function defined over the unit
sphere S2. Under the Gaussian model of diffusion, an
ADC profile can be uniquely defined by a diffusion tensor
as in Eq. (1). In contrast, under the general model, ADC
profiles are functions that form an open subset of the space
of complex-valued L2 spherical functions, which them-
selves form an infinite-dimensional Hilbert space, when
associated with the inner product

hf ; gi ¼
Z

S2
f ðk̂Þg�ðk̂Þdk̂; ð5Þ
where g�ðk̂Þ is the complex conjugate of gðk̂Þ. The induced
L2 norm is simply kf k ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
hf ; f i

p
, allowing us to define the

distance metric between two ADC profiles as if � gi.
A natural way to compute the inner product (5) is to

express the spherical functions in terms of spherical har-
monics, Y m

l ðh;/Þ,

f ðh;/Þ ¼
X1
l¼0

X2l

m¼�2l

F m
2lY

m
2lðh;/Þ;

where the unit vector k̂ is parameterized by the polar
coordinate h and the azimuthal coordinate /. Because
ADC profiles have zero imaginary components, F �m

2l ¼
ð�1ÞmðF m

2lÞ
�; and because of the antipodal symmetry, the

harmonic expansion has only even terms in the first index.
The scheme for reconstructing the coefficients F m

2l to model
general ADC profiles can be found in Alexander et al.
(2002). Given these coefficients and the orthogonality
among spherical harmonics, the inner product can be
computed using

hf ; gi ¼
X1
l¼0

X2l

m¼�2l

F m
2lðGm

2lÞ
�
: ð6Þ

Under the Gaussian model of diffusion, the ADC profile
can be decomposed into spherical harmonics by algebraic
manipulation, and the series has exactly six non-zero
coefficients:

F 0
0 ¼

ffiffiffiffiffiffi
4p
p

3
ðD11 þ D22 þ D33Þ;

F 0
2 ¼

1

3

ffiffiffiffiffiffi
4p
5

r
ð�D11 � D22 þ 2D33Þ;

F 1
2 ¼ �ðF �1

2 Þ
� ¼

ffiffiffiffiffiffi
2p
15

r
ð�2D13 þ 2iD23Þ;

F 2
2 ¼ ðF �2

2 Þ
� ¼

ffiffiffiffiffiffi
2p
15

r
ðD11 � D22 � 2iD12Þ;

and the L2 inner product (6) can be expressed algebraically
in terms of the diffusion tensors

hD1;D2iL ¼
8p
15
hD1;D2iC þ

1

2
TrðD1ÞTrðD2Þ

� �
;

which induces the distance metric

kD1 �D2kL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p
15
kD1 �D2k2

C þ
1

2
Tr2ðD1 �D2Þ

� �s
:

Here we propose a new similarity measure that is based on
comparing ADC profiles but it focuses on comparing only
their anisotropic components. This is done by ignoring the
l = 0 term in the original L2 inner product (6). Under the
Gaussian model of diffusion, the new inner product, in
terms of the diffusion tensors, becomes

hD1;D2iD ¼
8p
15
hD1;D2iC �

1

3
TrðD1ÞTrðD2Þ

� �
;
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which induces the distance metric

kD1 �D2kD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p
15
kD1 �D2k2

C �
1

3
Tr2ðD1 �D2Þ

� �s
:

Interestingly, this metric is precisely the Euclidean distance
between the respective deviatoric tensors of D1 and D2

(modulo the constant multiplier
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8p=15

p
) (Alexander and

Gee, 2000). The deviatoric tensor of a tensor D is the
anisotropy part of D and is defined as D� 1

3
TrðDÞI with

I being the identity tensor. This means that the anisotropy
parts of a ADC profile and its corresponding diffusion ten-
sor contain essentially identical information.

3.2. Formulating tensor reorientation

Under rigid transformations of diffusion tensor images,
tensor reorientation is well-defined. As illustrated in
Fig. 2(c), this involves applying the rotational component
of the rigid transformation to each tensor. Let the orthog-
onal matrix Q denote the rotational component of a rigid
transformation. (For Q to represent physical rotations, Q

should be special orthogonal, i.e., its determinant should
be +1.) The action of the reorientation operator R on a dif-
fusion tensor D is then

R½D� ¼ QDQT: ð7Þ
To formulate the reorientation effect of general transforma-
tions, it suffices to understand the reorientation effect of af-
fine transformations, because by using the Jacobian of a
transformation at each voxel we can establish a local affine
model of the voxel’s neighborhood. By making the funda-
mental assumption that image transformations affect only
the orientation (eigenvectors), but not the shape (eigen-
values) of the diffusion tensor, Alexander et al. (2001) further
reduce the problem of tensor reorientation into the problem
of finding for each tensor an orthogonal matrix with which
the reorientation can be applied using Eq. (7). They observe
that diffusion characterized by diffusion tensor is a property
of the tissue microstructure. Although the change in the tis-
sue orientation affects the tensor orientation, the change in
shape or extent of the tissue region should not alter its micro-
structure, thus not the shape of the diffusion tensor.
e1

e1

a b
Fig. 4. The PPD and FS reorientation. Panel (a) shows schematically an axial s
slice after a shear along the x -axis with each tensor reoriented using the PPD al
in dotted arrows. Panel (c) shows the slice after the same shear, but with each
Alexander et al. (2001) proposed several simple ‘‘reori-
entation strategies’’ to determine the orthogonal matrix Q

from the Jacobian matrix M of some affine (or locally
affine) transformation. The most widely used reorientation
strategy from Alexander et al. (2001) is the ‘‘preservation of
principal directions’’ (PPD) algorithm which addresses the
particular importance of the reorientation of e1, the origi-
nal orientation of the diffusion tensor. Because e1 provides
an estimate of the local fiber orientation and its image
under M provides the estimate to the orientation of the
transformed fiber, the first constraint that the PPD algo-
rithm imposes on Q is that Qe1 = n1 where ni = Mei/iMeii
is the normalized image of ei under M. The second con-
straint on Q is that Qe2 is as close to n2 as possible and
can be satisfied by setting Qe2 = m/imi where
m = n2 � (n1 Æ n2)n1. Fig. 4(b) illustrates the PPD reorienta-
tion applied to the image in Fig. 4(a) under a shearing
transformation. A less accurate algorithm in Alexander
et al. (2001) is the ‘‘finite strain’’ (FS) strategy. The FS
algorithm selects the best orthogonal approximation of
M to be Q, that is, Q is the solution of argminQ 0iQ 0 �Mi
which is equal to M=

ffiffiffiffiffiffiffiffiffiffiffi
MMT
p

. Fig. 4(c) shows the same slice
as in Fig. 4(b) but each tensor is reoriented using the FS
algorithm instead. Alexander et al. (2001) showed that
ignoring the dependency on the original orientation of
the diffusion tensor makes the FS strategy less accurate
compared to PPD (Alexander et al., 2001). However, when
the deformation component of M,

ffiffiffiffiffiffiffiffiffiffiffi
MMT
p

, is small, the FS
reorientation is a good approximation to PPD. Further-
more, in the framework of our algorithm, the FS strategy
is simpler to compute than PPD and is analytic rather than
algorithmic so that derivatives can be computed
analytically.

3.3. Affine registration algorithm

The unique feature of our affine registration algorithm
(Zhang et al., 2004) is that the tensor reorientation is incor-
porated into the analytic objective function for explicit ori-
entation optimization, i.e., the search for the optimal
reorientation of each tensor becomes part of the overall
optimization. This is accomplished by parameterizing the
e1

e1

e1

e1

c
lice in an anisotropic region of a DT-MR image. Panel (b) shows the same
gorithm. The images of the original eigenvectors under the shear are shown

tensor reoriented using the FS algorithm.
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Fig. 5. A 2D illustration of the template being uniformly subdivided into
contiguous regions. The neighbors to the region which is indexed by i and
colored black are identified by light grey coloring.
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Jacobian matrix M of an affine transformation in terms of
the polar decomposition of M and using the FS strategy for
tensor reorientation.

The polar decomposition divides a non-singular matrix
M into an orthogonal matrix Q (the pure rotation) and a
symmetric positive definite matrix S (the pure deforma-
tion), such that M = QS. (Since M represents the Jacobian
matrix of some physical transformation and therefore has a
positive determinant, Q is guaranteed to be a rotation
matrix.) Our algorithm relies on two important properties
of this decomposition. Firstly, the relation between M

and its decomposition is a bijection (Gallier, 2000). Thus
we can parameterize M uniquely in terms of its polar
decomposition. Secondly, the pure rotation Q is precisely
the best orthogonal approximation to M. Hence, Q is pre-
cisely the solution to the FS reorientation strategy.

In the framework of our method, FS reorientation has
two advantages over PPD reorientation. First, the rotation
in FS reorientation is analytic in terms of M whereas the
PPD rotation is algorithmic and has no closed-form
expression. Second, FS reorientation is automatically
determined via affine parameterization, while PPD reorien-
tation requires eigen-decomposition, thus computationally
more expensive.

By expressing an affine transformation F as (QS)x + T,
the similarity term for some region X is then

/ðpÞ ¼
Z

X
kIsððQSÞxþ TÞ � QItðxÞQTk2 dx; ð8Þ

where p = (q, s, t), q is the 3 Euler angles parameterizing Q,
s is the 6 independent components of S and t = T. The
derivatives of /(p) can be computed analytically as shown
in Appendix A.

3.4. Piecewise affine algorithm

The piecewise algorithm we propose involves using our
affine algorithm for region-wise matching, enforcing the
overall smoothness of the warp via smoothness constraints
on interfaces of regions.
Fig. 6. A 2D illustration of the interpolation scheme used to produce a smoot
grey square are the centers of the four neighboring regions, X1�4. The formulas
grey square, F, as an interpolation of the affine transformations of the region
We subdivide the template It into equal-size regions
denoted by Xi. In general, each region, Xi, has 6 neighbor-
ing regions and thus 6 different interfaces. For each region
Xi in the template, the goal of the piecewise algorithm is to
find an affine transformation Fi that gives the best match
with the subject, under certain smoothness constraints that
are described below. A 2D illustration is shown in Fig. 5.

We will refer to the collection of Fi over all possible
regions as a piecewise affine transformation, denoted as
F. Because the transformation within each region is affine,
the smoothness within a region is guaranteed. The smooth-
ness of the piecewise affine transformation thus needs to be
imposed only on region interfaces. Following the standard
approach in optical flow estimation (Hellier et al., 2001),
we minimize the transformation discontinuities across
interfaces, which is formulated for neighboring regions Xi

and Xj as

wðpi; pjÞ ¼
Z

Xi\Xj

kF iðxÞ � F jðxÞkdx; ð9Þ

where pi and pj parametrize Fi and Fj, respectively. Similar
to (8), analytic derivatives can be derived for (9) as shown
in Appendix B.

If the number of regions in each dimension is n, the
parameter space of this optimization problem has a dimen-
sion of 12n3. We subdivide the template hierarchically with
n being 4, 8, 16 and 32. At the finest subdivision level, the
h deformation from a piecewise affine transformation. The vertices of the
describe the construction of the transformation at a given point within the

s, F1�4.



H. Zhang et al. / Medical Image Analysis 10 (2006) 764–785 771
dimension of the parameter space is 393,216. The ability to
compute derivatives of (9) analytically allows us to take
advantage of the conjugate gradient method. Analytic
derivative-based optimization is generally more efficient
than optimization techniques that approximate derivatives
with finite-difference method. The high dimensionality of
our optimization problem makes optimization techniques
Fig. 7. The illustration of the white matter structures examined in this work.
bottom, they are the anterior thalamic radiations (ATR), the inferior fronto-occ
genu and the splenium of the corpus callosum (CC). The left column shows the
projection of the bundles onto structural and diffusion fractional anisotropy im
fibers blue and commissural fibers red. (For interpretation of the references to c
article.)
not using derivatives, such as the Powell’s direction set
(Press et al., 1993), impractical.

By construction, discontinuities across interfaces in the
piecewise affine transformation can be minimized but not
eliminated. Therefore, after the piecewise affine approxima-
tion to the underlying transformation is estimated at the
finest level, it is interpolated using the standard approach
The illustrated fiber bundles were derived from the template. From top to
ipital fasciculi (IFO), the corticospinal/corticobulbar tracts (CST), and the

3D rendering of the fiber bundles. The center and right columns display the
ages, respectively. The long-association fibers are colored green, projection
olour in this figure legend, the reader is referred to the Web version of this
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(Little et al., 1997) to generate a smooth warp field which is
then used to deform the subject into the space of the tem-
plate with the PPD reorientation. The interpolation scheme
is illustrated in Fig. 6.

4. Evaluation

To evaluate our proposed deformable algorithm, we
apply it to spatially normalize a set of DT-MR images to
Fig. 8. The illustration of the ROIs defined for the template. Each row consist
they were drawn to extract, and the 2D views of the ROIs overlaid with the str
for the ATRs, the IFOs, the CSTs and the genu/splenium of the CC. For the AT
The two ROIs for both the genu and the splenium of the CC are defined in one c
bottom center, the ones for the splenium to the bottom right.
an additional image chosen as the template. The algorithm
is assessed by its effectiveness in aligning anatomically cor-
responding white matter structures of pairs of images and
by the quality of the spatial normalizations with the nor-
malized images analyzed as a whole. The results from our
deformable algorithm are compared with affine registration
results.

In the following, we first describe the subjects and data
acquisition details pertaining to the MR images used in our
s of a 3D rendering of a pair of ROIs overlaid with the fiber bundle which
uctural image of the template. From top to bottom, the ROIs were defined

Rs, the IFOs and the CSTs, the ROIs for only one hemisphere are shown.
oronal slice, thus each pair are shown together: the ones for the genu in the
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evaluation. The details of registering the DT-MR images
are then described. Our scheme for evaluating the align-
ment of two anatomically corresponding white matter
structures is explained next. The criteria for assessing the
spatial normalization are discussed in the end.

4.1. Subjects and data acquisition

Nine healthy subjects, with a mean age of 23
(range = 19–30), were recruited from the community
served by the University of Pennsylvania Health System
(UPHS), Philadelphia, PA. This research was approved
by the local Institutional Review Board of the UPHS,
and all subjects signed written informed consent prior to
participation. Magnetic resonance imaging was performed
on a 3.0-T Siemens Trio scanner (Siemens Medical
Solutions, Erlangen, Germany). For each subject, a high-
resolution three-dimensional structural MRI and a diffu-
sion tensor MRI were obtained. The structural MRI was
acquired using a T1-weighted magnetization prepared
rapid gradient echo (MP-RAGE) sequence with the follow-
ing scanning parameters: repetition time (TR) 1620 ms,
Fig. 9. For illustrative purposes, the 39th axial slice from the fractional anisotro
image of each subject is shown. The top-left image is from the subject chosen
normalized to the template with affine registration.
echo time (TE) 3.87 ms, 15� flip angle, number of aver-
ages = 1, matrix size = 256 · 192, slice thickness of
1.0 mm, spacing between slices of 1.0 mm, yielding 160
axial slices with in-plane resolution of 0.98 · 0.98 mm. A
single-shot, spin-echo, diffusion-weighted echo-planar
imaging (EPI) sequence was used for the diffusion tensor
MRI. The diffusion scheme was as follows: one image with-
out diffusion gradients (b = 0 s/mm2), hereafter referred to
as the [b = 0] image, followed by 12 images measured with
12 non-collinear and non-coplanar diffusion encoding
directions isotropically distributed in space (b = 1000
s/mm2). Additional imaging parameters for the diffusion-
weighted sequence were: TR = 6500 ms, TE = 99 ms, 90�
flip angle, number of averages = 6, matrix size = 128 · 128,
slice thickness = 3.0 mm, spacing between slices = 3.0 mm,
40 axial slices with in-plane resolution of 1.72 · 1.72 mm.

4.2. Spatial normalization of diffusion tensor images

The diffusion tensor images were reconstructed from
their associated diffusion-weighted images that were first
resampled to the voxel space of 128 · 128 · 64 with the
py map (with a total of 64 axial slices) calculated from the diffusion tensor
as the template. The rest of the images are from the other 8 subjects after
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voxel spacing being 1.72 · 1.72 · 2.0 mm. The new voxel
space is more suitable for the hierarchical subdivision
scheme of our deformable algorithm. One of the diffusion
tensor images was arbitrarily designated as the template.
The other 8 images made up the group to be spatially nor-
malized. These images were first registered to the template
with our affine registration algorithm for diffusion tensor
images (Zhang et al., 2004). The affinely aligned images
were then registered to the template with our deformable
algorithm. The metric used in the deformable algorithm
is the proposed metric based on comparing only aniso-
tropic part of the ADC profiles described in Section 3.

4.3. Scheme for evaluating white matter alignment

Fiber bundles reconstructed with deterministic stream-
line-based tractography methods (Basser et al., 2000; Mori
and van Zijl, 2002) are a desirable representation of white
matter structures because they have been shown to demon-
strate great consistency with the structure of the axonal
fiber bundles observed in postmortem studies, particularly
Fig. 10. For illustrative purposes, the 39th axial slice from the fractional anis
tensor image of each subject is shown. The top-left image is from the subject c
after normalized to the template with the deformable algorithm.
for major white matter tracts (Wakana et al., 2004). There-
fore, we propose to evaluate the alignment of two white
matter structures by measuring the distance between their
corresponding fiber bundles derived from tractography.

4.3.1. Generation of fiber bundles
To ensure that we compare white matter structures that

are anatomically corresponding, we carefully selected a set
of white matter tracts that are readily identifiable and
whose fiber bundles can be derived reliably with tractogra-
phy. The set of white matter tracts chosen were as follows:
the anterior thalamic radiation (ATR) and the inferior
fronto-occipital fasciculus (IFO) from the family of long-
association fibers connecting different cortical areas; the
corticospinal/corticobulbar tracts (CST) from the family
of projection fibers connecting the cortex with the brain-
stem; the genu and the splenium of the corpus callosum
from the family of commissural fibers bridging inter-hemi-
spheric communication. Long-association fibers and pro-
jection fibers exist in both hemispheres of the brain.
Therefore the ATRs, the IFOs and the CSTs from both
otropy map (with a total of 64 axial slices) calculated from the diffusion
hosen as the template. The rest of the images are from the other 8 subjects
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sides of the brain were included. These structures are illus-
trated in Fig. 7.

These fiber bundles were generated according to the pro-
tocols proposed in Stieltjes et al. (2001), Mori et al. (2002)
and Wakana et al. (2004). Briefly, the fiber bundles are
reconstructed from diffusion tensor images using a deter-
ministic streamline tractography method known as FACT
(Mori et al., 1999; Xue et al., 1999), with a fractional
anisotropy threshold of 0.15 and an inner product thresh-
old of 0.8, which prevents angles larger than 37� during
tracking. A fiber was tracked from the center of any voxel
with a fractional anisotropy above 0.2. The fiber bundles of
interest were extracted from the fiber bundles of the whole
brain using multiple-region-of-interest (ROI) approach
(Stieltjes et al., 2001; Mori et al., 2002; Catani et al.,
2002), which leverages existing anatomic knowledge of
tract trajectories.

For the fiber bundles examined in this work, each was
extracted using two ROIs (Stieltjes et al., 2001; Mori
et al., 2002; Wakana et al., 2004). Using the segmentation
tool ITK-SNAP (http://www.itksnap.org) (Yushkevich
Fig. 11. For illustrative purposes, the 62th sagittal slice from the fractional anis
tensor image of each subject is shown. The top-left image is from the subject c
after normalized to the template with affine registration.
et al., 2006), these ROIs were manually delineated for each
of the 9 subjects, with the guidance of anatomical land-
marks that can be identified with relative ease and consis-
tency in structural images. The ROIs were drawn as
polygons either in the coronal plane (for extracting both
long-association fibers and commissural fibers) or in the
axial plane (for projection fibers). To ensure that the rela-
tive orientation of the ROIs with respect to their subjects
were consistent across multiple subjects, we first oriented
the structural images consistently by transforming them
to the same stereotactic space. This is accomplished using
the spatial normalization tool in SPM2 (Wellcome Depart-
ment of Cognitive Neurology, London, UK, http://www.
fil.ion.ucl.ac.uk/spm) (Friston and Holmes, 1995). The
transformations mapping the individual structural images
to the standard space defined by the SPM2 template were
affine and they were estimated by minimizing the residual
sum of squared differences (Friston et al., 1995; Ashburner
et al., 1997). Finally, the ROIs of each subject were trans-
formed to the space of its diffusion tensor image by the
inverse of the affine transformation that mapped its
otropy map (with a total of 128 sagittal slices) calculated from the diffusion
hosen as the template. The rest of the images are from the other 8 subjects

http://www.itksnap.org
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


Fig. 12. For illustrative purposes, the 62th sagittal slice from the fractional anisotropy map (with a total of 128 sagittal slices) calculated from the diffusion
tensor image of each subject is shown. The top-left image is from the subject chosen as the template. The rest of the images are from the other 8 subjects
after normalized to the template with the deformable algorithm.

Fig. 13. The comparison of the alignment of the individual ATRs from the 8 subjects to the ATRs from the template both after affine registration and
after deformable registration.
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structural image to the stereotactic space and by the trans-
formation coregistering its structural image to its [b = 0]
image. The latter transformation was estimated with the
coregistration tool within SPM2, which finds a rigid trans-
formation that minimizes a normalized mutual information
metric (Studholme et al., 1998). Fig. 8 demonstrates these
ROIs delineated for the template, along with the fiber bun-
dles extracted.

For the tractography, the diffusion tensor images were
reconstructed from the original un-resampled diffusion-
weighted images and were not manipulated in any other
way, thereby avoiding the introduction of any tensor inter-
polation or tensor reorientation artifacts. To produce the
fiber bundles corresponding to a spatially warped diffusion
tensor image, we instead warped the tractography-derived
Fig. 14. The comparison of the alignment of the individual IFOs from the 8 su
deformable registration.

Fig. 15. The comparison of the alignment of the individual CSTs from the 8 su
deformable registration.
fiber bundles of the original diffusion tensor image with
the transformation mapping the original diffusion tensor
image to the warped space as in Xu et al. (2002, 2003).

4.3.2. Computing distances between fiber bundles

Using the notations in Gerig et al. (2004), we denote a
fiber bundle as F ¼ fF i; F i ¼ ffpkgg where Fi is the ith
fiber, a 3D curve with a set of points pk. Given a pairwise
distance between fibers, we considered the following three
possible distance metrics for fiber bundles: the minimum,
the mean and the maximum of the closest distances for
every fiber of the two bundles. We chose to implement
the mean of the closest distances since it provides an esti-
mate that uses all the available data. It is more discriminate
than the minimum of the closest distances and is less
bjects to the IFOs from the template both after affine registration and after

bjects to the CSTs from the template both after affine registration and after



Fig. 16. The comparison of the alignment of the individual genu/splenium of the corpus callosum from the 8 subjects to the genu/splenium from the
template both after affine registration and after deformable registration.

Fig. 17. The comparison of the overall alignment of all the white matter
structures examined from the 8 subjects to those from the template both
after affine registration and after deformable registration.
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susceptible to the influence of outliers than the maximum
of the closest distances, which is also known as the Haus-
dorff distance. Mathematically, let d be a pairwise distance
between two fibers, we estimate the distance between two
fiber bundles F and G as,

1

jFj þ jGj
X
F i2F

min
Gj2G

dðF i;GjÞ þ
X
Gj2G

min
F i2F

dðF i;GjÞ
 !

; ð10Þ

where minGj2GdðF i;GjÞ is the distance between the fiber Fi

and the fiber in G that it is closest to and similarly
minF i2FdðF i;GjÞ is the distance between the fiber Gj and
the fiber in F that it is closest to. Observe that the expres-
sion (10) is symmetric with respect to the two fibers in-
volved and when two identical fiber bundles are perfectly
aligned, it evaluates to zero.
The pairwise distance between fibers, d, that we chose to
use in the expression (10) is similar to what is referred to by
Gerig et al. (2004) as ‘‘the mean of closest distances’’. It is
defined as ‘‘the mean of the closest distance for every point
of two fibers’’ (Gerig et al., 2004). Our implementation
leverages the way we extracted the fiber bundles which
allows us to approximately establish anatomic correspon-
dence between points along fibers from different subjects
as discussed in the following paragraph, as long as they
were from the same white matter structure. Given the
point-to-point correspondence between two fibers, we esti-
mate the distance between them as the mean of the distance
between corresponding points.

We establish the point-wise correspondence between
fibers from two fiber bundles of the same white matter tract
as follows. The two-ROI based fiber extraction allows us to
identify a pair of points pa,b on each fiber where it intersects
with each of the ROIs. Given that the ROIs were defined to
have anatomical correspondence across subjects and that
the fiber bundles in question pass through the ROIs in tight
clusters (relative to the length of the fiber bundles), we can
assume that pa,b from different subjects correspond to one
another. Then we apply arc-length reparametrization to
the fibers such that pa,b remain on the reparametrized fibers
and that the number of points between them are the same
after reparametrization. This establishes an unambiguous
point-wise correspondence between fibers. The two curve
segments that flank the piece between pa,b from different
fibers in general do not have the matching number of
points after the reparametrization and the unmatched
points are not considered in the distance computation.

4.4. Criteria for assessing spatial normalization

Assessing spatial normalization of diffusion tensor
images is less simple compared to similar analysis of
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scalar-valued images. We will use two criteria proposed in
Jones et al. (2002) that are designed for analyzing diffusion
tensor images: normalized standard deviation of tensors
and dyadic coherence. The first criterion quantifies, on a
Fig. 19. Normalized standard deviation map derived from the set of diffusion
slice starting from slice 16 to slice 48 of the 64-slice image.
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1

kDkC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

k¼1

kDk �Dk2
C

vuut ; ð11Þ

where D is the mean of the set of tensors from the same
voxel of a set of N diffusion tensor images and Dk is the
tensor from the kth image. The mean tensor D is com-
puted by component-wise averaging of the tensors,
{Dk}k=1,2, . . ., N. The second criterion estimates the vari-
ability of principal eigenvectors of tensors in each voxel
of a set of diffusion tensor images. It is based on calculat-
ing the mean of dyadic tensors formed from principal
eigenvectors of tensors (Basser and Pajevic, 2000). The
dyadic tensor of a tensor is equal to e1eT1 , the outer prod-
uct of the principal eigenvector of the tensor. The mean
dyadic tensor of a set of tensors is then computed as com-
ponent-wise averaging of the respective dyadic tensors.
Using the eigenvalues of the mean dyadic tensor, denoted
as {bi}i=1,2,3 sorted in descending order, the dyadic coher-
ence j is defined as

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ b3

2b1

s
: ð12Þ
Fig. 20. Normalized standard deviation map derived from the set of diffusio
fourth slice starting from slice 16 to slice 48 of the 64-slice image. For illustra
The dyadic coherence ranges from 0, when the different
subjects’ principal eigenvectors are oriented randomly, to
1, when the individual principal eigenvectors are identically
aligned.

5. Results

For illustrative purposes, one axial slice and one sagittal
slice of the FA maps from each of the 8 subjects both after
affine registration and after deformable registration are
shown in Figs. 9–12, respectively. The axial slice chosen
shows the top of the corpus callosum midbody in the case
of the template. Fig. 9 shows that affine registration failed
to align this structure from the other subjects to the one of
the template. The alignment of the midbody of the corpus
callosum was greatly improved after the deformable regis-
tration as shown in Fig. 10. The sagittal slice is at the level
of the inter-hemispheric fissure. Fig. 11 shows that affine
registration could not remove the large variability in the
shape of the corpus callosum. The overall length, curvature
of the corpus callosum, the shape of the genu and the sple-
nium vary significantly across subjects. The deformable
n tensor images normalized using deformable registration, showing every
tive purposes.
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registration however was able to greatly reduce these shape
variations as shown in Fig. 12.

The improved alignment with the deformable algorithm
was confirmed quantitatively based on the analysis of the
fiber bundle alignment as outlined in Section 4. Figs.
13–16 compare the white matter alignment after affine reg-
istration with after deformable registration. Except for the
ATRs, the alignment of the different structures examined
were improved for almost all subjects after deformable reg-
istration. We also computed the volume-weighted mean
bundle distance, which is the weighted sum of the distances
of all four structures with the weighting being proportional
to the volume of each structure. The volume of each struc-
ture is approximated by the total number of voxels result-
ing from voxelizing the corresponding fiber bundle. The
deformable algorithm reduced the volume-weighted mean
bundle distances for all subjects as shown in Fig. 17.

The improved white matter structure alignment at the
individual subject level was also reflected in the improved
quality of spatial normalization. Fig. 18 shows the histo-
grams of the normalized standard deviation of tensors
and the dyadic coherence from the subjects after affine reg-
Fig. 21. Dyadic coherence map derived from the set of diffusion tensor image
from slice 16 to slice 48 of the 64-slice image.
istration and after deformable registration respectively. To
limit the comparison to white matter regions alone, the his-
tograms were computed for the voxels with a fractional
anisotropy of the mean tensor larger than 0.3. For affine
registration, the normalized standard deviation histogram
peaks close to 22% similar to the value reported in Jones
et al. (2002). The normalized standard deviation histogram
for the deformable algorithm shifts significantly towards 0
compared to the one for the affine registration, indicating
lower tensor variability. In the case of dyadic coherence,
the histogram of the images after deformable alignment
peaks much closer to 1 compared to the histogram of the
images after affine alignment, revealing better alignment
of principal eigenvectors. To demonstrate the spatial distri-
bution of the improved normalization revealed in Fig. 18,
the maps of the normalized standard deviation derived
from the set of diffusion tensor images normalized using
affine and deformable registration are shown in Figs. 19
and 20, respectively. The corresponding dyadic coherence
maps are shown in Figs. 21 and 22. The normalized stan-
dard deviation map of deformable registration compared
to that of affine registration appears darker, i.e., lower in
s normalized using affine registration, showing every fourth slice starting



Fig. 22. Dyadic coherence map derived from the set of diffusion tensor images normalized using deformable registration, showing every fourth slice
starting from slice 16 to slice 48 of the 64-slice image.
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tensor variability, with the more pronounced reduction in
internal white matter regions. The dyadic coherence map
of deformable registration compared to that of affine regis-
tration features more and thicker bands of intense bright-
ness, i.e., large coherence, in major white matter tracts.
These observations further indicate that our deformable
algorithm improves white matter alignment.

6. Discussion

Diffusion tensor images afford us unique insight into
microscopic organization of white matter structures. Its
sensitivity to microscopic differences in white matter, such
as differences in axon myelination or axon fiber density, has
made the modality a popular choice for imaging based
study of white matter (Kubicki et al., 2002). Spatial nor-
malization of diffusion tensor images is a prerequisite for
studies that aim to explore unanticipated white matter dif-
ferences between multiple groups of population. Despite
the general consensus that registration algorithms based
on matching tensors as a whole should improve the align-
ment of diffusion tensor images, the computational chal-
lenges presented by tensor reorientation have limited the
development of such algorithms. Instead, spatial normali-
zation of diffusion tensor images has generally been done
by coregistering [b = 0] images to the corresponding struc-
tural images and then relying on the normalization of the
structural images (Xu et al., 2002, 2003). In this paper,
we have addressed the unique challenge of registration
using tensor-based metrics by presenting a method that
incorporates tensor reorientation in an efficient manner.
On a modern workstation, registering a diffusion tensor
volume of size 128 · 128 · 64, the run time of our proposed
deformable algorithm is around 5 min, comparable to that
of our affine algorithm (Zhang et al., 2004). We have dem-
onstrated that our deformable algorithm improves white
matter alignment upon affine registration both qualita-
tively and quantitatively. We have also shown that the
improved registration at the individual subject level trans-
lates to the improved spatial normalization at the group
level. Although it is beyond the scope of the current work,
the comparison of the quality of spatial normalization of
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the proposed method with the traditional one (Xu et al.,
2002, 2003) could help us quantify the benefits from using
tensor-based registration algorithms.

An additional contribution of this work is the quantifi-
cation of the alignment of white matter structures in terms
of their corresponding tractography-derived fiber bundles.
Park et al. (2003) also proposed to use tractography-
derived fiber bundles for the evaluation of white matter
alignment. In Park et al. (2003) the fiber bundles from dif-
ferent subjects were tracked from the same set of seed
points. To assess the alignment of two subjects, they com-
puted the distances between the corresponding fibers
tracked with the same seed points. Their motivation was
that the fibers from different white matter structures are
generally different in length and shape, thus if the fibers
from different subjects passing through a common seed
point are similar, it is likely the fibers belong to the same
white matter structure. Compared to the method of Park
et al. (2003), our scheme is different in that we compare
the fiber bundles from anatomically corresponding white
matter structures and allow us to assess the alignment of
specific structures of interest. In addition, we did not need
to generate fiber bundles in the warped diffusion tensor
images using tractography as in Park et al. (2003), thus
avoiding the introduction of fiber tracking errors due to
artifacts in the warped images caused by tensor interpola-
tion and reorientation. Our method, however, can not pro-
vide the same alignment assessment at the whole brain level
as in Park et al. (2003).

As discussed in Section 3, there are a number of tensor-
based metrics available. Our choice of deviatoric tensor-
based metric is motivated by our earlier results (Zhang
et al., 2005) which appeared to suggest that the more con-
tribution isotropic components of diffusion tensors have in
a metric, the less sensitive the metric is to match white
matter structures. Further analysis would be required to
conclude whether this is true in general or only applicable
to our particular method.

The use of the FS tensor reorientation in our algorithm
limits its application to small or finite deformation.
Extending the current method to deal with large deforma-
tion is an ongoing research. A promising solution for large
deformation tensor field matching was proposed by Cao
et al. (2006) as an extension to their earlier work (Cao
et al., 2005). Their algorithm uses PPD for tensor reorien-
tation and in their framework, PPD can be written in
closed-form and differentiated analytically.

Recent advances in tensor interpolation (Fletcher and
Joshi, 2004; Pennec et al., 2004; Arsigny et al., 2005) sug-
gest additional avenues for future research. Despite com-
ponent-wise tensor interpolation has known issues
(Fletcher and Joshi, 2004; Pennec et al., 2004; Arsigny
et al., 2005), it is much faster and simpler to compute than
the early alternatives (Fletcher and Joshi, 2004; Pennec
et al., 2004). Most recently, however, Arsigny et al.
(2005) introduced the Log-Euclidean framework for tensor
interpolation; the new framework is particularly attractive
for interpolating tensors during image registration because
of its fast and simple implementation. Comparing the effect
of using different tensor interpolation schemes on registra-
tion is an important area of future research.

7. Conclusion

In conclusion, we have presented a piecewise affine algo-
rithm that demonstrates explicit orientation optimization
required for optimal matching of diffusion tensor images
can be accommodated in deformable registration. More-
over, our novel formulation enables fast and accurate
optimization using analytic derivatives. The proposed algo-
rithm was evaluated by a novel scheme that assesses the
alignment of anatomically corresponding white matter
structures. Results from inter-subject registration demon-
strate the algorithm improves image alignment upon affine
registration.
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Appendix A. Analytic derivatives of the affine objective

function

Here we show the formulas for the derivatives of /(p)
(8). Recall that p = (q, s, t), where q = (h,/,w) and para-
metrizes the rotation matrix

Q¼
cos/ 0 sin/

0 1 0
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s = (S11,S21,S22,S31,S32,S33) and parametrizes the sym-
metric matrix
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t = (x,y,z) and parametrizes the translation T = t.
Let x 0 denote (QS)x + T, then the derivative with

respect to qi, the ith component of q is
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where oQ
oqi

can be derived from (A.1).
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The derivative with respect to si, the ith component of s

is

o/
osi
¼
Z

X
2
X3

j¼1

oIsðyÞ
oyj

�����
y¼x0

Q
oS
osi

� �
x

� �
j

; Isðx0Þ � QItðxÞQT

* +
dx;

where oS
osi

can be derived from (A.2).
The derivative with respect to ti, the ith component of t

is

o/
oti
¼
Z

X
2
X3

j¼1

oIsðyÞ
oyj

�����
y¼x0

oT

oti

� �
j

; Isðx0Þ � QItðxÞQT

* +
dx;

where oIsðyÞ
oyj

is the spatial derivative of the tensor image Is

along the spatial direction yj. Note that oT
oti

	 

j
¼ dij, thus

the derivative can be simplified to

o/
oti
¼
Z

X
2

oIsðyÞ
oyi

����
y¼x0

; Isðx0Þ � QItðxÞQT

* +
dx:
Appendix B. Analytic derivatives of the smoothness term

Here we show the formulas for the derivatives of w(pi,pj)
(9). To simplify the formulas, we will rename pi and pj as
p = (q, s, t) and p 0 = (q 0, s 0, t 0), respectively, and w(pi,pj)
becomes

wðp; p0Þ ¼
Z

Xp\Xp0

kF pðxÞ � F p0 ðxÞkdx

¼
Z

Xp\Xp0

kQðqÞSðsÞxþ TðtÞ � Qðq0ÞSðs0Þx

� Tðt0Þkdx

The derivative with respect to qi, the ith component of q

is

ow
oqi

¼
Z

Xp\Xp0

1

kF pðxÞ � F p0 ðxÞk

� oQðqÞ
oqi

SðsÞx; F pðxÞ � F p0 ðxÞ
� �

dx:

The derivative with respect to si, the ith component of s is

ow
osi
¼
Z

Xp\Xp0

1

kF pðxÞ � F p0 ðxÞk

� QðqÞ oSðsÞ
osi

x; F pðxÞ � F p0 ðxÞ
� �

dx:

The derivative with respect to ti, the ith component of t is

ow
oti
¼
Z

Xp\Xp0

1

kF pðxÞ � F p0 ðxÞk
oTðtÞ
oti

; F pðxÞ � F p0 ðxÞ
� �

dx:

Because w(p,p 0) = w(p 0,p), the derivatives with respect to
the components of p 0 can be derived by swapping p and
p 0 in the formulas for the derivatives with respect to the
components of p.
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