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High-Dimensional Spatial Normalization of
Diffusion Tensor Images Improves the Detection of

White Matter Differences: An Example Study
Using Amyotrophic Lateral Sclerosis

Hui Zhang, Brian B Avants, Paul A Yushkevich, John H Woo, Sumei Wang, Leo F McCluskey, Lauren B Elman,
Elias R Melhem, James C Gee

Abstract— Spatial normalization of diffusion tensor images
plays a key role in voxel-based analysis of white matter (WM)
group differences. Currently, it has been achieved using low-
dimensional registration methods in the large majority of clinical
studies. This paper aims to motivate the use of high-dimensional
normalization approaches by generating evidence of their impact
on the findings of such studies. Using an ongoing amyotrophic
lateral sclerosis (ALS) study, we evaluated three normalization
methods representing the current range of available approaches:
low-dimensional normalization using the fractional anisotropy
(FA), high-dimensional normalization using the FA and high-
dimensional normalization using full tensor information. Each
method was assessed in terms of its ability to detect significant
differences between ALS patients and controls. Our findings
suggest that inadequate normalization with low-dimensional
approaches can result in insufficient removal of shape differences
which in turn can confound FA differences in a complex manner,
and that utilizing high-dimensional normalization can both sig-
nificantly minimize the confounding effect of shape differences
to FA differences and provide a more complete description of
WM differences in terms of both size and tissue architecture
differences. We also found that high-dimensional approaches, by
leveraging full tensor features instead of tensor-derived indices,
can further improve the alignment of WM tracts.

Index Terms— diffusion tensor images, spatial normalization

I. INTRODUCTION

Diffusion tensor MRI is a unique imaging technique that
probes microscopic tissue properties by measuring local diffu-
sion of water molecules [1]. Its demonstrated ability to depict
in vivo the intricate architecture of white matter (WM) [2] has
made it an invaluable tool for furthering our understanding
of WM both in normal populations and in populations with
brain disorders. Diffusion tensor imaging has been applied
to study the variations in normal brain neuronal circuitry [3]
and its left-right asymmetry [4]–[7], and to follow its changes
over the lifespan both through its maturation and aging [8]–
[11]. The disorders to which diffusion tensor imaging has been
applied range from various WM diseases [12], such as multiple
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sclerosis [13], [14], amyotrophic lateral sclerosis (ALS) [15]–
[17] and Krabbe disease [18], to diseases characterized by
cognitive deficits or behavorial disorders with suspected WM
involvement [19], such as schizophrenia [20], [21], Turner syn-
drome [22] and chromosome 22q11.2 deletion syndrome [23],
and to brain injuries including both ischemic and traumatic
types [24], [25].

To anatomically localize WM differences across populations
using diffusion tensor imaging, the approach most commonly
taken is voxel-based whole brain analysis [3], [16], [20], [22],
[23], [26], [27]. This approach works by first spatially nor-
malizing all subjects, i.e., placing them all in correspondence
with one another, thereby removing inter-subject variations in
shape or shape confounds. Any remaining differences between
subjects then correspond to differences in appearance features,
properties of diffusion in this case. They are subsequently
evaluated and correlated with other factors on a voxel-by-voxel
basis.

The key element of voxel-based analysis is spatial nor-
malization of the diffusion tensor images. The quality of
spatial normalization determines the extent to which the shared
anatomy, in this case WM tracts, are aligned. Therefore, it has
direct impact on the successful removal of shape confounds
and consequently on the validity, specificity and sensitivity
of the subsequent statistical inferences of group differences.
Currently, the large majority of clinical studies have chosen
to employ the spatial normalization approach of aligning the
diffusion tensor images using low-dimensional image registra-
tion algorithms via their corresponding structural images, i.e.,
T1- or T2-weighted images [3], [16], [20], [22], [23], [26],
[27], or via their fractional anisotropy (FA) images [28]. This
normalization strategy allows researchers to take advantage of
available registration tools, with the nonlinear normalization
algorithm within SPM2 [29] being the most commonly used.
However, the limited spatial normalization quality of low-
dimensional approaches has made the interpretation of their
findings challenging, as discussed in [30]. The registration
algorithms underlying the low-dimensional appraches use low-
dimensional representations of spatial transformation that can
not adequately model the complex brain morphological dif-
ferences often seen across subjects. The high-dimensional
normalization approaches improve the quality of normaliza-
tion by employing registration algorithms that employ high-
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dimensional representations of spatial transformation. Spatial
normalization strategies based on high-dimensional registra-
tion methods have so far found few clinical applications in
WM studies, with the Park et al. analysis of WM asymme-
try [31] being one notable exception. The reluctance to adopt
high-dimensional registration can be attributed to these meth-
ods being less widely available and more resource-intensive
than their low-dimensional counterparts. Furthermore, in the
context of WM studies, the impact of improved normalization
on the statistical findings has not yet been clearly demon-
strated.

The aim of our paper is to motivate the use of high-
dimensional normalization approaches in WM studies by gen-
erating evidence of their impact on the outcomes of multi-
subject analysis. A secondary aim is to examine the utility
of using full tensor information in comparison with tensor-
derived indices, specifically, the FA. Our evaluation was based
on the general task-driven approach, which has been success-
fully used in the literature to determine the impact of novel
normalization techniques on the sensitivity of population-level
fMRI analysis ( [32]–[34]). For our purposes, we chose to use
an ongoing ALS study as our example. ALS is a progressive
neurodegenerative disorder that affects both upper and lower
motor neurons. Using diffusion tensor imaging, a reduction of
FA in the primary motor pathway affected by upper neuron
degeneration has been shown consistently by both region-of-
interest [15], [17] and voxel-based analyses [16], [28], making
ALS the ideal candidate for this evaluation. Using the diffusion
tensor imaging data from the ALS study, we evaluated three
normalization methods that represent the current range of
available approaches: tensor-based high-dimensional registra-
tion, high-dimensional registration of FA images, and low-
dimensional FA registration. The performance of each method
was assessed in terms of its ability to detect statistically
significant differences between ALS patients and controls.
We found that WM differences were influenced by shape
confounds in a complex manner. Only when the statistical
findings were analyzed in conjunction with an evaluation of
the quality of spatial normalization, could their interaction be
fully understood. Our findings suggest that high-dimensional
normalization approaches should play an important role in
WM population studies and that they can realize their full
potential when full tensor features are used to drive the
alignment of WM tracts.

The rest of the paper is organized as follows. In Sec. II, we
review the basics of diffusion tensor imaging and related work
in diffusion tensor image analysis. Sec. III briefly describes
each method in comparison and gives details of the study
design, which is followed by a detailed description of our
evaluation strategy in Sec. IV. The results of our evaluation
are presented in Sec. V and then discussed in Sec. VI.

II. BACKGROUND

Diffusion tensor MRI leverages molecular diffusion, water
diffusion in particular, that can reveal certain microscopic
features of the underlying tissue, particularly the presence of
fibrous structures. For instance, in WM, which consists of

packed axon fibers that constitute neuronal pathways, diffu-
sion appears anisotropic due to restricted movement of water
perpendicular to the axon fibers; the direction along which
water diffuses most freely coincides with the orientation of the
fibers [35]. Diffusion tensor MRI assumes a Gaussian diffusion
model for water molecules and captures their diffusion proper-
ties in each voxel of a MRI volume by determining an apparent
diffusion tensor, a symmetric and positive-definite (SPD) 3-by-
3 matrix. The diffusion tensor provides estimates of the mean
diffusivity, anisotropy and dominant orientation of diffusion.
Within WM of normal brain, the mean diffusivity has been
found to be close to constant, whereas the diffusion anisotropy
and the dominant orientation of diffusion have been found
to vary greatly [2]. The diffusion anisotropy measures the
variability of the diffusion along different spatial directions.
Although its variation can not be accounted for by any single
microstructural factor or a combination of them, the diffusion
anisotropy appears to be highly sensitive to differences in WM
architecture [2]. The most commonly used diffusion anisotropy
measure is fractional anisotropy (FA), which is defined as the
normalized standard deviation of the eigenvalues of a diffusion
tensor and ranges from 0 to 1: 0 for isotropic diffusion and 1
for perfectly anisotropic diffusion [36]. The dominant direction
of diffusion, on the other hand, captures the orientation of the
underlying WM fiber bundles. Its variability is a reflection
of the complexity of our neuronal network. By following the
dominant directions of diffusion within WM using a technique
known as fiber tractography (See [37] for a review), major WM
tracts have been able to be successfully localized [38]–[40].

The rich description of diffusion properties using the diffu-
sion tensors suggests that optimal spatial normalization can
be achieved by utilizing registration methods that leverage
full tensor features. However, there are unique challenges for
the development of such methods, as discussed in [41]. The
most challenging aspect of all is arguably the procedure known
as tensor reorientation: the need to correct tensor orientation
during image warping such that it remains consistent with
the underlying WM organization [42]. Earlier diffusion tensor
image registration techniques circumvent tensor reorientation
by registering scalar images derived from diffusion tensor
images [43], [44], thus discarding the orientation component
of the data. Some other methods register actual tensor images
but not reorienting the tensors during registration [45], [46],
thus introducing inaccuracies in image matching. Later, Park
et al [47] showed that using diffusion tensors as a whole
improved the quality of registration by better matching the
diffusion tensors orientation information; but their method
only applied tensor reorientation iteratively and tensor reori-
entation was not explicitly optimized. Curran et al [48] then
demonstrated that explicitly optimizing tensor reorientation
during affine registration of synthetic images improved image
matching. However, their method [49] is not derivative-based
and their registration optimization tends to have difficulties
with local minima. We have proposed an affine registration
algorithm that both explicitly optimizes tensor reorientation
and has a novel derivative-based formulation in [50], [51]. Our
synthetic examples show that our derivative-based method is
faster and reaches global minima more consistently than the
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method not using derivatives. More recently, high-dimensional
methods have been developed that optimize tensor orientation
explicitly. Cao et al [52] developed a large deformation diffeo-
morphic registration algorithm for vector fields. The algorithm
was applied to register diffusion tensor images by matching
their corresponding principal eigenvectors. We have proposed
a dense piecewise affine deformable algorithm for diffusion
tensor images that explicitly optimizes tensor orientation [53].
Most recently, in a preliminary work, Cao et al have extended
their large deformation diffeomorphic registration algorithm
for vector fields to diffusion tensor images [54].

Besides voxel-based analysis, the other commonly used
approach is region-of-interest (ROI) based analysis. The ROI-
based analysis is often appropriate when study hypotheses
relate to specific regions [6], [12], [15], [17]. However, this
approach is often labor intensive and its effectiveness is limited
by the consistency of the ROI delineations across subjects.
The development of fiber tractography algorithms, which offer
a semi-automatic and anatomy-based means of segmenting
major WM tracts, has led to an improved ROI-based analysis
strategy in which the ROIs are derived using tractography
such that the subsequent analysis is confined to the fiber
bundles [55]–[59]. Most recently, tract-specific analysis has
been extended to allow corresponding locations along a fiber
tract to be evaluated across subjects [60]–[62]. Despite its
numerous advantages, this approach should be taken with
caution because tractography algorithms have not yet been
thoroughly validated. There has been evidence that suggests
tractography underestimates the size of fiber bundle at least in
pathological condition [63]. Very recently, a hybrid approach
known as tract-based spatial statistics (TBSS) was proposed,
which attempts to combine the best of voxel-based and tract-
based analyses [30].

III. MATERIALS AND METHODS

A. Subjects and Data Acquisition

The subjects used in this evaluation study were recruited
from the community served by the University of Pennsylvania
Health System (UPHS) as part of an ongoing clinical inves-
tigation into WM changes in ALS using magnetic resonance
imaging. Out of a total of 29 subjects scanned, only 16 were
acquired with the same diffusion imaging protocol and they
were chosen for the present study. Among them were 8 ALS
patients (age 42-77, mean age and standard deviation 60±11;
6 male, 2 female) and 8 healthy controls (age 40-56, mean age
and standard deviation 46±6; 6 male, 2 female). All subjects
provided informed consent, following procedures approved by
the local Institutional Review Board of the UPHS. Diffusion
tensor imaging was performed using a single-shot, spin-echo,
diffusion-weighted echo-planar imaging (EPI) sequence on
a 3.0-T Siemens Trio scanner (Siemens Medical Solutions,
Erlangen, Germany). The diffusion sampling scheme consisted
of one image without diffusion gradients (b = 0 s/mm2), fol-
lowed by 12 images measured with 12 non-collinear and non-
coplanar diffusion encoding directions isotropically distributed
in space (b = 1000 s/mm2). Additional imaging parameters for
the diffusion-weighted sequence were: TR = 6500 ms, TE =

Fig. 1. FA map of the population-specific tensor template used in the spatial
normalization.

99 ms, 90o flip angle, number of averages = 6, matrix size =
128×128, slice thickness = 3.0 mm, spacing between slices =
3.0 mm, 40 axial slices with in-plane resolution of 1.72×1.72
mm, resulting in voxel dimensions equal to 1.72 × 1.72 × 3.0
mm3.

B. Image Preprocessing

The diffusion-weighted images were first corrected for
motion and eddy-current artifacts according to the method
reported in [64], prior to extracting brain parenchyma with
the Brain Extraction Tool [65]. The diffusion tensor images
were then reconstructed from the diffusion-weighted images
using the standard linear regression approach [1]. Finally, the
resulting tensor volumes were resampled to a voxel space of
128 × 128 × 64 with voxel dimensions equal to 1.72 × 1.72 ×
2.5 mm3. The resampled volume, with axial dimension equal
to a power of 2, is better suited for registration algorithms that
require the construction of standard multi-resolution image
pyramids.

C. Population-Specific Tensor and FA Templates

A population-specific tensor template was constructed from
all 16 subjects using an iterative strategy similar to the one
described in [66]. An initial template was computed as an
average of the original subject diffusion tensor images. The
template was then iteratively refined by repeating the following
procedure: register the subjects to the template, then compute
a refined template for the next iteration as an average of
the normalized images. This procedure was repeated until the
change between templates from consecutive iterations became
sufficiently small. During each iteration, the diffusion tensor
images were registered to the respective template estimate
using the tensor registration algorithm described later in the
section. The FA template was taken as the FA map derived
from the tensor template and it is illustrated in Fig. 1.

D. Spatial Normalization

The three spatial normalization methods we chose to eval-
uate are the SPM2 normalization via FA images representing
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low-dimensional approaches, the diffeomorphic normalization
via FA images representing high-dimensional approaches us-
ing tensor-derived indices, and finally the tensor normalization
via diffusion tensor images themselves representing high-
dimensional approaches using full tensor features.

1) Initial Alignment: The diffusion tensor images were first
affinely aligned to the template. The tensor images after the
affine alignment were provided as the input to the tensor
registration algorithm while their respective FA maps were
given as the input to the SPM2 and diffeomorphic FA image
registration algorithms.

2) SPM2 Normalization: We chose the default parame-
ters for the SPM2’s non-linear registration algorithm which
minimizes the residual sum of squared intensity differences
with a 12-parameter affine transformation and a non-linear
transformation comprising a linear combination of 7 × 8 × 7
smooth spatial basis functions [67].

3) Diffeomorphic Normalization: We chose to optimize a
cross-correlation metric under the constraints of a diffeomor-
phic transformation model in multi-resolution and symmetric
fashion [68].

4) Tensor Normalization: The diffusion tensor image reg-
istration algorithm used here is an extension of the deformable
diffusion tensor image registration method recently proposed
in [53]. The algorithm leverages full tensor-based similarity
metrics while optimizing tensor orientation explicitly. It ap-
proximates smooth transformations using a dense piecewise
affine parametrization which is sufficient when the required de-
formations are not large. The current extension handles larger
deformations by iteratively composing smaller incremental
deformations estimated using the algorithm in [53]. We used
the tensor metric that measures the L2 distance between the
anisotropic part of the apparent diffusion profiles associated
with the diffusion tensors as described in [53]. Under this
metric, the distance between two diffusion tensors D1 and
D2 is equal to√

8π

15
(‖D1 −D2‖2C −

1
3

Tr2(D1 −D2)) ,

where ‖D1−D2‖C is the Euclidean distance between the two
tensors and equal to

√
Tr((D1 −D2)2).

E. Statistical Non-Parametric Mapping of WM Differences
Between the ALS and Control Groups

The statistical non-parametric maps of WM differences
were derived using the SnPM toolbox (freely available
at http://www.sph.umich.edu/ni-stat/SnPM/) [69]. The SnPM
toolbox uses the general linear model [70] to construct t-
statistics images that are subsequently assessed for statisti-
cal signficance using permutation testing, a standard non-
parametric procedure for multiple comparison correction.
Specifically for the present study, the appropriate t-statistics
images were produced by statistically comparing the voxelwise
data values of the ALS and control populations using two-
sample t tests. We carried out the voxelwise t tests on the
brain volumes that were spatially normalized to the template
following the procedures outlined in Sec. III-D. Hence the

resulting t-statistics images were in the same space as the
template brain volume. Furthermore, we restricted the t tests
to the WM region, which we defined as the set of voxels
with FA values greater or equal to 0.2 in the FA template
according to [30]. The total number of such voxels is 48,768.
Next, the t-statistics maps were assessed for statistical sig-
nificance using suprathreshold cluster tests. Suprathreshold
cluster tests threshold a statistic image at a predetermined
primary threshold and assess the size of clusters, connected
suprathreshold regions, for significance. Here we chose the
primary threshold to be 3.72 corresponding to an uncorrected
p-value of 0.001. The clusters with Family-Wise Error (FWE)
corrected p-values less than 0.1 are reported. Among them,
the ones with FWE corrected p-values less than 0.05 are
considered to be highly significant. The FWE corrected p-
values were determined using permutation tests. Given the
number of possible permutations for the current data set is
only 12,870, the full permutation test is feasible and was used.
This procedure of deriving statistical non-parametric maps was
applied to identify both local volumetric and FA differences,
and was repeated for each of the three spatial normalization
methods. The respective statistical maps were subsequently
compared to form a basis for comparison.

Local volumetric differences were derived following the
standard approach of tensor-based morphometry [71], [72].
For each subject, a Jacobian determinant field was computed
from the spatial transformation obtained from normalizing
its brain volume to the template at the spatial normalization
stage. Statistical testing was then performed over the natural
logarithm of the relevant Jacobian determinant fields.

The normalized FA maps for statistical non-parametric
mapping of FA differences were derived by warping the input
FA maps using the spatial transformations estimated from
spatial normalization. By generating the normalized FA maps
in an identical fashion for all the normalization methods, we
can attribute any differences in the normalized FA maps solely
to the differences in the normalization methods themselves.

IV. EVALUATION

The premise of our evaluation strategy is that the accuracy
of spatial normalization directly affects the success in remov-
ing shape confounds which in turn influences the ability to
detect WM differences. Specifically, each method was first
assessed for its spatial normalization accuracy, which was
measured in terms of two voxelwise statistics indicative of
the extent of WM alignment. The ability of each method to
detect local volumetric differences was analyzed next, which
served to provide a direct measure of the extent to which
shape confounds are removed, as well as to be an integral
part of understanding group differences of WM, relative size
differences of WM tracts in this case. Finally, each method’s
performance in detecting FA differences was determined. To
evaluate the influence of shape confounds on the FA findings,
we analyzed specifically the normalization quality of the
voxels belonging to the clusters with significant FA differences
using the two voxelwise statistics derived at the outset. In the
following, each component of our evaluation is described in
order.
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A. Evaluating the Overall Spatial Normalization Performance

Since diffusion anisotropy and the dominant direction of
diffusion are two features that account for most of the varia-
tions in WM structures [2], misalignment that renders different
WM structures being mapped to one another should yield
large voxelwise variations in either one or both of the features.
Therefore, we chose normalized FA standard deviation σ̄FA

and dyadic coherence κ, as the two voxelwise statistics to
gauge normalization quality. Given a set of diffusion tensors,
σ̄FA, which is defined as the ratio of the standard deviation
and mean of the FA values of these diffusion tensors, measures
the variability in diffusion anisotropy, while κ [44], which
takes values that range from 0 to 1 (0 for randomly oriented
directions and 1 for identically oriented directions), captures
the variability in the dominant direction of diffusion. In the
current context, given a set of 16 subject images normalized
to the template using one of the three normalization methods,
the pair of descriptive statistics were calculated at each voxel
within the WM region of the template. To compare the result-
ing σ̄FA and κ statistical maps across spatial normalization
methods, we examined their respective empirical cumulative
distribution functions (CDF). The method producing better
spatial alignment should result in more reduction in σ̄FA and
larger increase in κ, which in turn will be reflected as its
σ̄FA and κ CDFs being more to the left and to the right,
respectively.

B. Evaluating Statistical Non-Parametric Mapping of Local
Volumetric Differences

For each spatial normalization method, we first examined
the number of significant suprathreshold clusters and the sta-
tistical significance of these clusters. The method that identifies
more local volumetric differences and thereby removes more
shape confounds (to FA analysis) should find more clusters
with higher significance.

To evaluate specifically the normalization quality of the
regions occupied by the significant suprathreshold clusters,
two-dimensional scatter plots were created to visualize the
distributions of both σ̄FA and κ of these voxels. The scatter
plots show the distribution of κ along the horizontal axis, the
distribution of σ̄FA along the vertical axis. We expect the
method with better spatial normalization quality should have
its voxels clustered more to the bottom right corner of the plot,
i.e., with both lower σ̄FA and higher κ. For each method, we
constructed a scatter plot of all the voxels within any of its
clusters, and for each cluster, a scatter plot of all of its voxels.

C. Evaluating Statistical Non-Parametric Mapping of FA Dif-
ferences

Here we repeated the same analyses as above for FA
differences. For each spatial normalization method, the num-
ber of significant suprathreshold clusters and their statistical
significance are examined. The method that identifies more FA
differences should find more clusters with higher significance.
Given that FA changes have been consistently reported in the
motor pathway [15]–[17], [28], particular attention was paid
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Fig. 2. Comparison of the overall performance of the three spatial normal-
ization methods in terms of the empirical cumulative distribution functions
(CDF) of both normalized FA standard deviation σ̄FA and dyadic coherence κ
computed for the voxels within the white matter region using their respective
normalized images. Given a distribution of some variable, the CDF of the
variable associated with the distribution maps a value of the variable to the
percentage of the distribution with values less than or equal to that. The
CDFs computed from the initial affine-aligned images are also shown as the
baselines.

to compare each method’s ability to detect such changes. The
scatter plots designed to analyze the clusters with significant
local volumetric differences in the previous section were also
used here to study the clusters with significant FA differences.

V. RESULTS

A. Comparison of the Overall Spatial Normalization Perfor-
mance

The CDFs of σ̄FA and κ for all three methods along with
the ones computed from the initial affine-aligned images are
shown in Fig. 2. Compared to the initial affine registration, the
respective σ̄FA CDFs of all three methods shifted to the left
demonstrating improved spatial alignment. The diffeomorphic
and tensor methods showed much more significant reduction in
σ̄FA than the SPM2 method with the diffeomorphic displaying
the most reduction. In the case of κ, the CDFs moved
towards the right of that for the initial affine registration
reflecting improved alignment of the dominant directions of
diffusion. The diffeomorphic and tensor methods again yield
better performance than the SPM2 method but the tensor
method produced more evident improvement in κ than the
diffeomorphic method.
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B. Comparison of Statistical Non-Parametric Mapping of Lo-
cal Volumetric Differences

The suprathreshold cluster tests were applied to identify
regions of both increased and decreased volume in the ALS
population. Only clusters with decreased volume were dis-
covered. We found 0, 2 and 2 such clusters for the SPM2,
diffeomorphic and tensor methods, respectively. The selected
representative slices showing all the clusters are presented in
Fig. 3 by overlaying the cluster voxels over the respective
mean FA images. Further details of each cluster are listed
in Table I. In these tables we have labeled each cluster and
reported its center of mass (in voxel unit) and volume (in
number of voxels), its FWE-corrected p-value, its anatomical
location, and a reference to Fig. 3, indicating the axial slice
level(s) on which it appears in the figure. The anatomical
locations were determined with reference to the fiber tract-
based atlas of human white matter anatomy [40].

Close inspection shows that all the identified clusters cor-
respond to extramotor areas and that although the two high-
dimensional methods found the same number of clusters, the
clusters that they identified correspond to different anatomies.
The clusters found with the tensor method are slightly higher
in statistical significance and larger in size.

The scatter plots of all the voxels within any of the clusters
for the diffeomorphic and tensor methods are shown in Fig. 4.
It shows that, compared to the tensor method, the significant
clusters found with the diffeomorphic method are with lower
κ (p-value = 8.7 × 10−9) and slightly lower σ̄FA (p-value
= 8.4× 10−3). The voxels with significantly lower κ belongs
to the cluster LD2 (compared to the voxels of the other three
clusters, p-value = 8.5×10−21), indicating poor alignment of
principal directions of diffusion at those voxels.

C. Comparison of Statistical Non-Parametric Mapping of FA
Differences

The suprathreshold cluster tests were applied to identify
regions of both increased and decreased FA in the ALS
population. Only clusters with decreased FA were discovered.
We found 3, 3 and 6 such clusters for the SPM2, diffeomorphic
and tensor methods, respectively. The selected representative
slices showing all the clusters are presented in Fig. 5. Details
of each cluster are tabulated and listed in Table II.

Close inspection of the spatial locations of these clusters
show that while the findings of the two high-dimensional
methods are very consistent with one another, they differ
significantly from that of the SPM2 method. For the clus-
ters located in the motor pathway, the ones found with the
diffeomorphic method agree well with the ones found with
the tensor method: FD1 and FT1 corresponding to the left
cerebral peduncle (CP) ; FD2 and FT4 corresponding to the
posterior portion of the left superior corona radiata (SCR);
FD3 and FT5/FT6 corresponding to the posterior portion of
the right SCR. Only a single cluster along the motor pathway
was found with the SPM2 method: FS2 corresponding to the
posterior portion of the left SCR. While the diffeomorphic
method identified no extramotor clusters, both the SPM2 and
tensor methods found two such clusters each. However, these
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Fig. 4. The scatter plots of the voxels within all the clusters with significant
local volumetric differences found with the diffeomorphic (top) and tensor
(bottom) methods. The scatter plot of a set of voxels displays the distributions
of normalized FA standard deviation σ̄FA and dyadic coherence κ at those
voxels along the vertical and horizontal axes, respectively. For each set of
voxels, the mean and standard deviation of their σ̄FA and κ are reported in
the figure legend in that order.

two sets of extramotor clusters do not correspond to the same
anatomies.

Fig. 6 shows, for each method, the scatter plot of all the
voxels belonging to any of its clusters, from which we can
make the following observations: (1) compared to the scatter
plots of the two high-dimensional methods, the scatter plot
of the SPM2 method is both more sparse and scattered.
The sparsity reflects the fact that the number of voxels in
the clusters found with the SPM2 method is much smaller
than those of the two high-dimensional methods: 100, 212
and 210 for the SPM2, diffeomorphic and tensor methods,
respectively. The more scattered pattern indicates that a large
number of the voxels in the clusters found with the SPM2
method were poorly aligned. The voxels of the clusters found
with the SPM2 method have larger variances in both σ̄FA and
κ than those of the clusters found with the high-dimensional
methods. Furthermore, these voxels have much higher σ̄FA

(p-value = 5.2 × 10−39) than those of the clusters found
with the high-dimensional methods. Finally, they have much
lower κ (p-value = 6.2 × 10−16) compared to those of the
clusters found with the tensor method, but only slightly so (p-
value = 0.27) when compared to those of the clusters found
with the diffeomorphic method. (2) Comparing the two high-
dimensional methods, the scatter plots show that while the
clusters found with the diffeomorphic method had slightly
lower σ̄FA (p-value = 4.7 × 10−5) than those found with
the tensor method, the clusters found with the tensor method
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Fig. 3. Clusters with significant local volumetric differences found with each of the three methods superimposed with the respective FA means of the
normalized control and ALS subjects. Note that the images were rendered following the radiological convention: the displayed left is the physical right.

TABLE I
DETAILS OF THE CLUSTERS WITH SIGNIFICANT LOCAL VOLUMETRIC DIFFERENCES FOUND WITH THE DIFFEOMORPHIC AND TENSOR METHODS. FOR

EACH CLUSTER, WE LISTED ITS LABEL, ITS CENTER OF MASS (IN VOXEL UNIT) AND VOLUME (IN NUMBER OF VOXELS), ITS FWE-CORRECTED P-VALUE,
ITS ANATOMICAL LOCATION, AND A REFERENCE TO FIG. 3, INDICATING THE AXIAL SLICE LEVEL(S) ON WHICH IT APPEARS IN THE FIGURE.

DIFFEOMORPHIC METHOD
Label Center of Mass [x,y, z] Volume PFWE−corr Anatomical Location Axial Slice(s) Shown
LD1 [62, 78, 35] 37 0.0879 genu of corpus callosum 35
LD2 [68, 68, 40] 48 0.0515 left cingulum 40

TENSOR METHOD
Label Center of Mass [x,y, z] Volume PFWE−corr Anatomical Location Axial Slice(s) Shown
LT1 [72, 89, 29] 44 0.0784 left forcep minor / left anterior corona radiata 28, 30
LT2 [53, 86, 30] 55 0.0456 right forcep minor / right anterior corona radiata 28, 30

had significantly higher κ (p-value = 1.6× 10−26) than those
found with the diffeomorphic method.

Fig. 7 compares the scatter plots of the voxels within the
clusters that are along the motor pathway and found with one
of the three methods. The left panel compares the clusters in
the left CP: FD1 and FT1 found with the diffeomorphic and
tensor methods, respectively. FD1 is slightly larger in size but
less in significance than FT1. The scatter plot shows that the
voxels in FD1 have slightly lower σ̄FA (p-value = 1.4×10−3)
but much lower κ (p-value = 1.2×10−11) than those of FT1.
The middle panel compares the clusters in the posterior portion
of the left SCR: FS2, FD2 and FT4 found with the SPM2,

diffeomorphic and tensor methods, respectively. FS2 is the
smallest of the three and the least significant. In contrast, FD2
and FT4 are both larger and more significant. Compared to
FT4, FD2 is much larger and includes voxels located more
superiorly. However, FT4 is the cluster of the highest statistical
significance. The scatter plot shows that the voxels in FT4
have significantly lower κ (p-value = 4.2× 10−34) compared
to the voxels in both FS2 and FD2. The right panel compares
the clusters in the posterior portion of the right SCR: FD3
found with the diffeomorphic method, FT5 and FT6 found
with the tensor method. Anatomically, we consider FT5 and
FT6 jointly since the two clusters are only a few voxels apart
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Fig. 5. Clusters with significant FA differences found with each of the three methods superimposed with the respective means of the normalized control and
ALS subjects. Note that the images were rendered following the radiological convention: the displayed left is the physical right.

from each other. They are located directly contralateral to the
FT4 and the inferior portion of the FD2, while FD3 is located
directly contralateral to the superior portion of the FD2. The
voxels in FT5 has a much larger variance in κ than those of
FT6 and FD3. This is accounted for by 14 of the 27 voxels in
FT5 that have κ larger than 0.85. The mean and the standard
deviation of κ of this subset of FT5 are 0.66 ± 0.11, while
those of the other voxels in FT5 are 0.90± 0.06. It turns out
that all these voxels are located on the slice levels 40 and 41.
Anatomically, they are at the interface of the right SCR and
the corpus callosum, two fiber bundles traversing in distinctly

different directions, thus the principal directions of diffusion
for those voxels are poorly defined.

Fig. 8 compares the scatter plots of the voxels within
the extramotor clusters found with either the SPM2 or the
tensor methods. Observe that FS1 and FS3, the two clusters
found with the SPM2 method, have much larger σ̄FA (p-
value = 1.4× 10−67) than any other clusters found with any
of the three methods, indicating the poor alignment. In fact,
these two clusters account for the overall larger σ̄FA of the
clusters found with the SPM2 method than the ones found
with the two high-dimensional methods as discussed above.
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TABLE II
DETAILS OF THE CLUSTERS WITH SIGNIFICANT FA DIFFERENCES FOUND WITH THE SPM2, DIFFEOMORPHIC AND TENSOR METHODS. FOR EACH

CLUSTER, WE LISTED ITS LABEL, ITS CENTER OF MASS (IN VOXEL UNIT) AND VOLUME (IN NUMBER OF VOXELS), ITS FWE-CORRECTED P-VALUE, ITS

ANATOMICAL LOCATION, AND A REFERENCE TO FIG. 5, INDICATING THE AXIAL SLICE LEVEL(S) ON WHICH IT APPEARS IN THE FIGURE.

SPM2 METHOD
Label Center of Mass [x,y, z] Volume PFWE−corr Anatomical Location Axial Slice(s) Shown
FS1 [57, 80, 37] 28 0.0495 interface between the right cingulum and corpus

callosum
37

FS2 [76, 52, 40] 47 0.0165 posterior portion of the left superior corona radiata 40-42
FS3 [57, 62, 40] 25 0.0642 right cingulum 40, 41

DIFFEOMORPHIC METHOD
Label Center of Mass [x,y, z] Volume PFWE−corr Anatomical Location Axial Slice(s) Shown
FD1 [73, 63, 24] 29 0.0636 left cerebral peduncle 24
FD2 [74, 52, 42] 135 0.0046 posterior portion of the left superior corona radiata 40-42, 46
FD3 [54, 47, 46] 48 0.0269 posterior portion of the right superior corona radiata 46

TENSOR METHOD
Label Center of Mass [x,y, z] Volume PFWE−corr Anatomical Location Axial Slice(s) Shown
FT1 [73, 64, 23] 26 0.0371 left cerebral peduncle 24
FT2 [64, 62, 37] 18 0.0785 midbody of corpus callosum 37
FT3 [51, 82, 39] 43 0.0121 right forcep minor / anterior portion of the right

superior corona radiata
37, 40

FT4 [76, 52, 42] 72 0.0037 posterior portion of the left superior corona radiata 40-42
FT5 [52, 63, 42] 27 0.0345 posterior portion of the right superior corona radiata 40-42
FT6 [52, 54, 42] 24 0.0435 posterior portion of the right superior corona radiata 41, 42
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Fig. 6. The scatter plots of the voxels within all the clusters with significant FA differences found with the SPM2 (left), diffeomorphic (middle), and tensor
(right) methods. The scatter plot of a set of voxels displays the distributions of normalized FA standard deviation σ̄FA and dyadic coherence κ at those voxels
along the vertical and horizontal axes, respectively. For each set of voxels, the mean and standard deviation of their σ̄FA and κ are reported in the figure
legend in that order.
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FD3:0.16±0.04,0.72±0.09
FT5:0.13±0.04,0.78±0.15
FT6:0.13±0.02,0.94±0.02

Fig. 7. The scatter plots of the voxels within the clusters with significant FA differences that are along the motor pathway and found with one of the three
methods: the clusters in the left cerebral peduncle (left), the clusters in the posterior portion of the left superior coronal radiata (middle), and the clusters
in the posterior portion of the right superior coronal radiata (right). The scatter plot of a set of voxels displays the distributions of normalized FA standard
deviation σ̄FA and dyadic coherence κ at those voxels along the vertical and horizontal axes, respectively. For each set of voxels, the mean and standard
deviation of their σ̄FA and κ are reported in the figure legend in that order.

Compared to the two high-dimensional methods, the voxels
of FS2 have only slightly higher σ̄FA (p-value = 4.9×10−4),
while the voxels of FS1 and FS3 have much higher σ̄FA (p-

value = 2.2 × 10−65). This can also be appreciated visually
by inspecting the Figs. 3 and 5. In clear contrast to the visible
similarity between the mean FA images of the ALS and control
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populations for the two high-dimensional methods, there is
visible difference between those for the SPM2 method for the
slices on which these clusters appear. Among all the clusters
found with the tensor method, FT3 is similar to FT5 in that
it also has relatively lower κ than the others. The anatomical
location of FT3 also corresponds to the interface of two fiber
bundles, the corpus callosum and the anterior portion of the
right SCR, traversing in different directions. Thus the principal
directions of diffusion are poorly defined for many voxels of
FT3.
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FS1:0.25±0.06,0.69±0.14
FS3:0.32±0.10,0.76±0.16
FT2:0.18±0.03,0.95±0.02
FT3:0.17±0.03,0.79±0.11

Fig. 8. The scatter plots of the voxels within the extramotor clusters with
significant FA differences found with either the SPM2 or the tensor methods.
The scatter plot of a set of voxels displays the distributions of normalized FA
standard deviation σ̄FA and dyadic coherence κ at those voxels along the
vertical and horizontal axes, respectively. For each set of voxels, the mean
and standard deviation of their σ̄FA and κ are reported in the figure legend
in that order.

VI. DISCUSSION

In this paper, we evaluated and compared the efficacy
of three different algorithms representing the spectrum of
spatial normalization approaches for diffusion tensor images
in the context of a typical voxel-based investigation into WM
differences between populations. We used an ongoing ALS
study as an example and measured the efficacy of each method
by its ability to identify statistically significant differences
between the ALS and control populations. This assessment
was then correlated with the quality of spatial normalization.
In doing so, we hoped to understand the impact of spatial
normalization on the validity, specificity and sensitivity of the
subsequent statistical inference of WM differences.

Our assessment of the quality of spatial normalization found
that the SPM2 method produced lower spatial normalization
quality than the other two methods. This is expected, given
that the method utilizes a low-dimensional parametrization
of spatial transformation that limits its ability to represent
local deformation. Also as expected, the diffeomorphic method
employing a state-of-the-art scalar image registration algo-
rithm reduced the normalized FA standard deviation the most.
The tensor method performed only slightly worse than the
diffeomorphic method even though it does not use FA as a
feature to drive the registration directly and does not employ
the most general representation of spatial transformation. On
the other hand, the tensor method demonstrated significantly
larger increase of κ, i.e., more aligned dominant directions

of diffusion, than the diffeomorphic method. This suggests
that the tensor method, by leveraging tensor features to guide
registration, better aligns the fiber tracts underlying WM
tissues.

We found that the spatial normalization quality of these
methods correlated well with their ability to capture significant
local volumetric differences, i.e., shape differences. The SPM2
method that had the worst spatial normalization performance
identified no significant shape differences, while the other
two methods that produced similarly better normalization
quality both extracted two clusters of significant shape differ-
ences. Compared to the clusters found with the diffeomorphic
method, the ones found with the tensor method were slightly
larger in size and higher in significance. But the two high-
dimensional methods were essentially comparable in their
performances.

We also found that a method’s ability to capture significant
FA differences is similarly influenced by its spatial normaliza-
tion quality. Overall, the total number of voxels in the clusters
found with the SPM2 method was much smaller than those
of the clusters found with the two high-dimensional methods.
Excluding FS1 and FS3, the two clusters with much higher
σ̄FA than all other clusters, the total number of voxels found
with the SPM2 method became even smaller. In contrast,
the total numbers of voxels in the clusters found with the
two high-dimensional methods were essentially identical. In
addtion, anatomically, there was evident similarity between
the motor pathway findings of the diffeomorphic and tensor
methods whereas, these clearly disagreed with those of the
SPM2 method. The diffeomorphic and tensor methods had all
their clusters in the motor pathway similarly located spatially.
In contrast, FS2 was the only such cluster found with the
SPM2 method. This pattern clearly mirrors that of the observed
spatial normalization quality of all the methods.

The clear discrepancy between the SPM2 method’s findings
and those of the other two methods made evident the impact
of the spatial normalization quality. The inadequate normal-
ization performance of the SPM2 method translated into its
inability to identify the shape differences uncovered by the two
high-dimensional normalization methods. Consequently, these
uncovered shape differences remained and became confounds
to the findings of FA differences. Structural misalignment
rendered the FA values of different structures as opposed to
those of the same structures from different subjects to be
compared voxelwise. Our study demonstrates that this can
have a number of adverse effects on the findings. Firstly, it in-
troduced false-positive clusters. The significant FA differences
reported by these clusters did not reflect any differences in the
diffusion properties of some common anatomy. Instead, they
indicated that there existed some systematic shape differences.
FS1 and FS3, the two clusters that had much larger σ̄FA

than all other clusters, were evidently such false-positives.
Secondly, it introduced false-negative clusters. In this case, the
confounding effect of misalignment rendered the underlying
FA differences less significant. This is most likely why the
SPM2 method failed to capture the other clusters in the
motor pathway that were found with the two high-dimensional
methods. Finally, it reduced the sensitivity of the analysis to
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the true-positive clusters. FS2, the sole motor pathway finding
of the SPM2 method, is a good example of this. It is both
much smaller and much less significant compared to FD2 and
FT4, the two clusters at the same location that were found
with the two high-dimensional methods.

The consistency in the FA findings of the diffeomorphic
and tensor methods provides converging evidence for the
credibility of their findings and thus for an important role
for high-dimensional registration algorithms in studies of WM
differences. The low-dimensional normalization techniques,
exemplified by the SPM2 method, have proven successful
in voxel based morphometry that extracts underlying shape
or morphological differences via the analysis of residual
differences. However, there are clear issues in applying them
for recovering “true” FA differences as highlighted above.
We showed that the high-dimensional normalization methods,
such as the two examined here, were able to remove shape
confounds by optimally aligning common structures. Conse-
quently they were better able to present a more complete
description of WM difference by simultaneously revealing
both shape differences and “true” FA differences. The for-
mer identifies notable size changes in WM tracts while the
latter highlights significant changes in the underlying tissue
architecture.

The few findings that differed in the diffeomorphic and
tensor methods appeared to be a reflection of the difference
in each method’s strength. On one hand, the diffeomorphic
method has the advantage of employing the most general class
of smooth transformations. Therefore, it is able to model larger
shape differences than the piecewise affine transformations
used with the tensor method. This is likely the explanation
of the tensor method’s failure to identify the cluster LD1 (cor-
responding to significant shape differences at the midsagittal
portion of the corpus callosum). Similarly, the diffeomorphic
method was able to identify more voxels with FA differences
in the more superior part of the motor pathway closer to the
cortex, as demonstrated by the clusters FD2 and FD3. In all
these regions, there is little variation in the orientation of the
underlying WM tracts, thus the tensor method’s sensitivity
to orientation does not gain an advantage while its more
constrained transformation model perhaps limited its ability to
remove shape confounds. On the other hand, the tensor method
is sensitive to fiber orientations, which gives it the advantage
of being able to disambiguate regions with similar FA values
but different orientation patterns. For instance, the cluster FT2
found with the tensor method (corresponding to FA differences
at the midbody of corpus callosum) was not identified by
the diffeomorphic method. Instead, the diffeomorphic method
identified the cluster LD2 corresponding to shape differences
in the vicinity. Observe that the cluster LD2 is located across
the interface of the right cingulum and the right portion
of corpus callosum, two tracts traversing in two orthogonal
directions but appearing similar on the FA maps. Combining
with the fact that the cluster has a significant number of voxels
with low κ, this discrepancy is most likely explained by the
diffeomorphic method’s misalignment. Similarly, this might be
true for LT1, LT2 and FT3, the other extramotor clusters found
with the tensor methods that the diffeomorphic methods did

not identify. The better alignment of tract orientation might
also contribute to the higher statistical significance of the
clusters FT1 and FT4 found with the tensor method (corre-
sponding to FA differences at the left CP and the posterior
portion of the left SCR) than the clusters FD1 and FD2 found
with the diffeomorphic method. In light of these observations,
we believe that methods, such as [54], that employ both the
diffeomorphic formulation of transformation and full tensor
feature driven registration, have the promise to achieve more
optimal normalization and hence better discovery of WM
differences.

Since the two populations used in this study were not
age matched, it is important to determine if our findings
are confounded by the age differences before they can be
compared to previously published ALS findings. Given that
the age differences between the two populations are very
significant (p-value = 0.0057), we can not use age as an
covariate to correct for age differences. However, in a region-
of-interest based analysis, it has been shown that no significant
FA changes could be identified between an middle aged (mean
age 52) healthy population and an older (mean age 71) healthy
population [10]. This leads us to believe that our findings of
FA reductions in the motor pathway are due to the disease
effect and that they are consistent with previous findings.
The extramotor cluster FT3 found with the tensor methods is
consistent with the known findings of age-related frontal FA
reduction [10]. The extramotor clusters LT1 and LT2 found
with the tensor methods might represent the frontal WM size
reduction associated with the FA reduction.

There are a number of issues that the current paper does not
address but will be of interest for future research. Firstly, we
did not examine the effect of image smoothing on statistical
findings of different normalization methods. In the case of
low-dimensional normalization, Jones et al have demonstrated
that varying the amount of image smoothing can produce very
different findings [73]. Examining the smoothing effect on
high-dimensional normalization might help us to understand
if misalignment contributes to the complex nature of the
smoothing effect on low-dimensional normalization. Secondly,
the effect of the choice of the template was not examined.
The current template was generated using the tensor-based
registration with the hope that the orientation features that
don’t affect the normalization methods using FA but are im-
portant to the normalization method using full tensor features
were better maintained in the resulting template. But it will
be valuable to study how different the results of this study
will be if the template is generated using the diffeomorphic
normalization instead. Additionally, the current population-
specific template was not optimally constructed to be most
representative of the average shape of the population and can
be improved by using algorithms, such as [68], that produce
shape averages. Finally, we did not explore the possiblity of
deriving the spatially normalized FA maps from the spatially
normalized tensor images. Since the FA is a nonlinear function
of the tensor, interpolating FA will produce different numerical
results from first interpolating the corresponding tensors then
computing the FA. It will be interesting to determine the
optimal approach to produce spatial normalized FA maps in
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the future. The current evaluation framework can be used to
examine this question.

VII. CONCLUSION

We presented an evaluation of three spatial normaliza-
tion methods for diffusion tensor images representative of
the current range of available approaches that include low-
dimensional normalization using the FA, high-dimensional
normalization using the FA and high-dimensional normaliza-
tion using the full tensor features. The evaluation was done
in the context of a typical whole brain voxel-based population
study of WM differences, using an ongoing ALS study as the
example. Our findings suggest that inadequate normalization
with low-dimensional approaches can result in insufficient
removal of shape differences which in turn can confound
FA differences in a complex manner, and that utilizing high-
dimensional normalization can both significantly remedy the
confounding effect of shape differences to FA differences and
provide a more complete description of WM differences in
terms of both size and tissue architecture differences. We also
found that high-dimensional approaches, by leveraging full
tensor features instead of tensor-drived indices, can further
improve the alignment of WM tracts.
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