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A B S T R A C T

Automatic skull-stripping or brain extraction of magnetic resonance (MR) images is often a fundamental step in
many neuroimage processing pipelines. The accuracy of subsequent image processing relies on the accuracy of
the skull-stripping. Although many automated stripping methods have been proposed in the past, it is still an
active area of research particularly in the context of brain pathology. Most stripping methods are validated on
T1-w MR images of normal brains, especially because high resolution T1-w sequences are widely acquired and
ground truth manual brain mask segmentations are publicly available for normal brains. However, different MR
acquisition protocols can provide complementary information about the brain tissues, which can be exploited
for better distinction between brain, cerebrospinal fluid, and unwanted tissues such as skull, dura, marrow, or
fat. This is especially true in the presence of pathology, where hemorrhages or other types of lesions can have
similar intensities as skull in a T1-w image. In this paper, we propose a sparse patch based Multi-cONtrast brain
STRipping method (MONSTR),2 where non-local patch information from one or more atlases, which contain
multiple MR sequences and reference delineations of brain masks, are combined to generate a target brain
mask.

We compared MONSTR with four state-of-the-art, publicly available methods: BEaST, SPECTRE, ROBEX,
and OptiBET. We evaluated the performance of these methods on 6 datasets consisting of both healthy subjects
and patients with various pathologies. Three datasets (ADNI, MRBrainS, NAMIC) are publicly available,
consisting of 44 healthy volunteers and 10 patients with schizophrenia. Other three in-house datasets,
comprising 87 subjects in total, consisted of patients with mild to severe traumatic brain injury, brain tumors,
and various movement disorders. A combination of T1-w, T2-w were used to skull-strip these datasets. We show
significant improvement in stripping over the competing methods on both healthy and pathological brains. We
also show that our multi-contrast framework is robust and maintains accurate performance across different
types of acquisitions and scanners, even when using normal brains as atlases to strip pathological brains,
demonstrating that our algorithm is applicable even when reference segmentations of pathological brains are
not available to be used as atlases.

1. Introduction

Skull-stripping of magnetic resonance (MR) images is an important
pre-processing step for most neuroimaging pipelines. Skull-stripping
(or brain extraction) usually results in a binary brain mask of an MR
image after removal of non-brain structures, such as eyes, fat, bone,
marrow, and dura. Most skull-stripping methods are optimized and

validated on T1-w images, since high resolution T1-w structural images
are prevalent in clinical studies. Furthermore, T1-w images provide
excellent contrast between brain tissues, making it the leading imaging
sequence for volumetric measurements. Subsequent post-processing
steps, such as tissue segmentation, cortical labeling and thickness
computations, are usually performed on stripped T1-w images. The
accuracy of the post-processing steps depends on the accuracy of skull-
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stripping. Incorrect inclusion of dura, sinus, or meninges, which have
gray matter (GM) like intensities on T1-w images, may result in
systematic overestimation of gray matter or cortical thicknesses (van
der Kouwe et al., 2008). Therefore accurate, automated estimation of
brain masks is desirable, since manual delineations of brain masks,
although considered gold standards, are time-consuming and prone to
intra- and inter-rater variability.

There are two main categories of stripping methods that have been
proposed in the past, edge based and template based. The first type of
methods try to find an edge between brain and non-brain structures,
since both brain and fat are isointense in T1-w MRI, but the skull is
dark. The Brain Extraction Tool (BET) (Smith, 2002) uses a deformable
surface model which is initialized as a sphere at the center of gravity of
the brain, and deformed until it reaches the brain boundary. Brain
surface extraction (BSE) (Shattuck et al., 2001) employs series of image
processing steps such as anisotropic diffusion, edge detection, and
morphological filtering to detect the boundary. Another popular
stripping tool in the AFNI3 package is 3dSkullStrip, which is a modified
version of BET where robust measures are undertaken to distinguish
between brain and skull. GCUT (Sadananthan et al., 2010) is a graph
cut based tool that finds an initial brain mask by a threshold that is
chosen as an intensity between GM and cerebro-spinal fluid (CSF)
intensities via histogram analysis. Then narrow connections between
brain and non-brain tissues, which consists primarily of CSF and skull,
are removed to get the brain mask. Freesurfer (Dale et al., 1999) uses a
hybrid combination of watershed and deformable surface evolution to
robustly initialize the brain mask and subsequently improving it by
local intensity correction using a probabilistic atlas. Other methods
employ convolutional neural networks (Kleesiek et al., 2016), morpho-
logical filtering (Lemieux et al., 1999), region growing (Roura et al.,
2014; Park and Lee, 2009), edge detection (Mikheev et al., 2008),
watershed (Hahn and Peitgen, 2000), histogram threshold (Galdames
et al., 2012; Shan et al., 2002), and level sets (Zhuang et al., 2006).
Note that most of these algorithms are optimized for T1-w images,
although BET (Smith, 2002) and MARGA (Roura et al., 2014) can also
work with T2-w images.

While these methods are shown to be widely successful on healthy
subjects, they tend to be less accurate when presented with pathology.
Furthermore, their performance can vary significantly when applied to
images from different sites, scanners, and imaging acquisition proto-
cols (Iglesias et al., 2011; Boesen et al., 2004). To improve the
robustness, the second type of stripping methods involve affine or
deformable registrations with templates. ROBEX4 (Iglesias et al., 2011)
uses a random forest classifier to segment a brain mask after register-
ing the subject to a template via affine registration, and then a point
distribution model is fitted to the segmentation result to make sure the
shape of the mask is reasonable. It is devoid of any tunable parameters
and is robust on multiple inhomogeneous datasets. SPECTRE (Carass
et al., 2007, 2011) uses a combination of registration and tissue
segmentation. Multiple atlases, having manually drawn brain masks,
are linearly registered to the subject image to create an initial estimate
of the subject brain mask. Then the image is segmented into objects
like GM, WM, CSF, bone, and background, and the segmentation is
combined with the initial brain mask to compute the final mask.
OptiBET (Lutkenhoff et al., 2014) is a modified version of BET, which
was shown to be robust on pathological brains. Another modification of
BET uses registration to an atlas to drive the deformable surface to the
brain boundary (Wang et al., 2011).

Using the more recent label fusion techniques (Heckemann et al.,
2006; Wang et al., 2013), multi-atlas deformable registration based
stripping methods have been also been proposed. These methods, such
as MASS (Doshi et al., 2013), MAPS (Leung et al., 2011), BEMA (Rex

et al., 2004), Pincram (Heckemann et al., 2015), ANTs (Avants et al.,
2011), and others (Serag et al., 2016; Shi et al., 2012), involve
deformable registrations of multiple atlases to a target image. The
atlases contain accurate, often manually or semi-automatically drawn
brain masks. After registration, the brain masks are deformed to the
subject space and fused together using joint label fusion (Wang et al.,
2013), or STAPLE (Warfield et al., 2004). The accuracy of stripping
depends on the accuracy of registrations. Therefore large number of
atlases are usually needed to capture the wide variability in brain
anatomy. As a result, these methods are time-consuming and compu-
tationally intensive (Eskildsen, 2012).

Multi-atlas label fusion based methods generally outperform the
edge based methods both in terms of accuracy and robustness (Rehm
et al., 2004). However, all of them are optimized for T1-w images and
validated on normal brains. In the presence of traumatic brain injury
(TBI) and other pathologies such as tumors, there are two problems
with multi-atlas label fusion. First, T1-w images may not be optimal to
detect brain boundary, since hemorrhages, tumors or lesions can have
similar intensities as non-brain tissues; second, deformable registra-
tion may not be accurate enough or can be trapped in a local minima if
atlases do not have similar lesions as the subject at a similar location of
the brain.

Recently, non-local patch (Buades et al., 2005) based methods have
been successful in many neuroimaging applications, such as tissue
segmentations (Coupé et al., 2012; Hu et al., 2014; Roy et al., 2015b;
Rousseau et al., 2011; Wang et al., 2014), classification (van Tulder and
de Bruijne, 2015), lesion segmentation (Roy et al., 2014b, 2010b;
Guizard et al., 2015), registration (Roy et al., 2014a; Iglesias et al.,
2013), super resolution (Roy et al., 2010a; Robles et al., 2010),
intensity normalization (Jog et al., 2013, 2015; Roy et al., 2013b)
and image synthesis (Roy et al., 2013a, 2014c; Rousseau, 2008; Burgos
et al., 2014). A recent skull-stripping method, BEaST (Eskildsen, 2012)
is based on non-local patch matching using multiple atlases. An atlas is
composed of a T1-w image and the brain mask. Atlases are transformed
to the subject space via affine registration and an initial subject brain
mask is estimated. Then for every patch within a narrow band around
the initial estimated brain boundary on the subject T1-w image, a
search neighborhood is defined. Relevant patches from the registered
atlases within that neighborhood are then collected and similarity
weights are computed between each of those atlas MR patches and the
subject MR patch. Corresponding atlas brain mask patches are
combined by the same weights to generate a brain mask.

In most applications, it is imperative that brain masks include all
lesions, so that subsequent tumor, hemorrhage segmentations, or even
tissue segmentation methods (Lopez et al., 2015), perform optimally.
An example is given in Fig. 1, where T1-w and T2-w images of one
normal subject (Fig. 1(a)–(b)) and two patients with severe TBI and
congenital malformations (Fig. 1(c)–(d)) are shown, along with brain
masks obtained from 5 different methods, BEaST (Eskildsen, 2012),
SPECTRE (Carass et al., 2011), OptiBET (Lutkenhoff et al., 2014),
ROBEX (Iglesias et al., 2011), and our proposed Multi-cONtrast brain
STRipping (MONSTR). Significant amount of skull and marrow is
present on the normal subject for 4 methods, except the proposed one,
because T2 provides excellent contrast to distinguish skull from brain.
For patients with TBI, T2-w images provide better contrast for the
blood and brain vs skull, while T1-w images provide desired contrast
for only one patient (Fig. 1(d)). Therefore inclusion of multiple
contrasts or imaging sequences can provide better brain vs skull
delineation. While BEaST underestimates the brain masks by removing
all of the lesions, SPECTRE and ROBEX can overestimate the masks by
including some skull and marrow, shown in Fig. 1(c)–(d), yellow
arrow. T2-w images can also provide better contrast to distinguish
between brain and other non-brain tissues such as dura, marrow,
meninges, and sinuses, which are dark in T2 but have GM like
intensities in T1. Consequently, MONSTR generates a more accurate
estimate of the brain masks by including the lesion and excluding the

3 https://afni.nimh.nih.gov/afni/.
4 https://www.nitrc.org/projects/robex.
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skull. A recent neural network based method (Kleesiek et al., 2016)
addresses the stripping of images with tumors using multi-contrast
data. However, the ventricular system, subarachnoid CSF and the
tumors were excluded from the brain mask, keeping only GM and WM,
which may not be suitable for further image processing tasks, such as
the segmentation of tumors or quantification of the intracranial
volume.

The proposed method MONSTR is a patch based method involving
atlas registrations. An atlas consists of multiple image sequences, like
T1-w, T2-w etc, and its binary brain mask. The brain mask includes
CSF, GM, WM, and excludes skull, fat, eyes, dura, meninges, and
sinuses. The atlases are first deformably registered to the subject. Then
the corresponding atlas brain masks are transformed to the subject
space to form an initial estimate of the subject brain mask. Then for
every subject patch within a narrow band around the initial brain
boundary, a neighborhood is found, and a sparse weight is computed
for the atlas patches within that neighborhood based on the similarity
between the subject patch and the atlas patches of the multiple MR
sequences. Corresponding atlas brain mask patches are combined
using the sparse weights to generate a probability function, which is
thresholded at 0.5 to form a binary mask.

There are three main differences between our method and BEaST.
First, BEaST only uses T1-w images, while MONSTR can use multiple
MR sequences, or other modalities e.g. CT. Second, for a particular
subject patch, instead of choosing relevant patches based on local mean

and standard deviations, we choose a sparse collection of patches based
on an elastic net formulation (Zou and Hastie, 2005), which auto-
matically selects a few relevant matching patches. Third, instead of
using affine registration, the atlases are registered to the subject via a
coarse deformable registration using ANTS (Avants et al., 2011);
details are given in Section 2.3. The advantage of using an approximate
deformable registration over affine is it provides a better initial brain
mask while taking approximately the same amount of time.

2. Materials and method

2.1. Datasets

We used 6 datasets to validate our method, of which three are
publicly available. The first dataset, referred to as ADNI-29, consists of
29 normal subjects obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (Mueller et al., 2005). They
have T1-w MPRAGE (GE 1.5 T, TR=8.9 ms, TE=3.9 ms, TI=1 s, flip
angle 8°, resolution1.01 × 1.01 × 1.20 mm3) and T2 (TR=3 s, TE=96 ms,
flip angle 90°, resolution 0.94 × 0.94 × 3 mm3) images. Whole brain
segmentations of these images were manually drawn on T1-w images
and provided by Neuromorphometrics.5 We used all non-zero voxels in

Fig. 1. (a) and (b) show axial and coronal orientations of a healthy subject, where brainmasks from 5 different skullstripping methods, BEaST (Eskildsen, 2012), SPECTRE (Carass
et al., 2011), OptiBET (Lutkenhoff et al., 2014), ROBEX (Iglesias et al., 2011), and our multi-contrast approach called MONSTR, are compared. MONSTR, which use both T1 and T2-w
images, minimizes inclusion of extracranial tissues. Other methods include parts of skull and marrow. (c) shows a patient with congenital malformation and (d) with severe TBI. Note
that lesions can be hypointense (c) or hyperintense (d) on T1-w images. BEaST removes both types of lesions from the mask, and other T1-w image based methods include parts of the
skull (yellow arrow). MONSTR retains the lesions within the brain mask while including most of the intracranial tissues. The first two rows used T1 images to demonstrate cases where
segmentations erroneously included tissues outside of the brain (e.g. bone marrow). The bottom rows used T2 images to better illustrate segmentation errors that did not include the
entire intracranial vault (eg. CSF was outside the mask). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5 http://www.neuromorphometrics.com/.
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the segmentations to generate the brain masks. Although 30 subjects
were in the Neuromorphometrics database, we excluded one because it
was a repeat scan.

The second dataset, referred to as NAMIC-20, obtained from
NAMIC multimodality project,6 consists of 10 normal controls and
10 patients with schizophrenia. They have T1-w spoiled gradient-
recalled acquisition (SPGR) images (GE 3 T, TR=7.4 ms, TE=3 ms,
TI=600 ms, 10° flip angle, resolution 1 × 1 × 1 mm3), T2-w
(TR=2500 ms, TE=80 ms, resolution 1 × 1 × 1 mm3), and binary brain
masks based on T2-w images.

The third dataset, referred to as MRBrainS-5, obtained from the
2013 MRBrainS MICCAI grand challenge7 (Mendrik et al., 2015),
consists of 5 normal controls. They have T1-w MPRAGE (Philips 3 T,
TR=7.9 ms, TE=4.5 ms, resolution 1 × 1 × 1 mm3) and T2 FLAIR
(TR=11 s, TE=125 ms, TI=2.8 s, resolution 0.96 × 0.96 × 3 mm3)
images. 3-class segmentations (CSF, GM, WM) were provided, and
we used non-zero voxels from the segmentations to generate brain
masks.

The fourth dataset, referred to as TBI-19), is in-house and consists
of 19 patients with mild to severe TBI. They have T1 MPRAGE, both
precontrast and postcontrast, (Siemens 3 T, TR=2.53 s, TE=3.03 ms,
TI=1.1 s, flip angle 7°, resolution 1 × 1 × 1 mm3), and T2-w (TR=3.2 s,
TE=409 ms, flip angle 120°, resolution 0.49 × 0.49 × 1 mm3) images. T2

and postcontrast T1 images were rigidly registered (Avants et al., 2008)
to the MPRAGE, and binary brain masks were drawn on the registered
T2-w images.

The fifth dataset contains 32 patients with various movement
disorders (called MOV-32). The scans consist of T1-w MPRAGE
(Philips 3 T, TR=8.1 ms, TE=3.7 ms, flip angle 8°, resolution
0.94 × 0.94 × 1 mm3), T2-w (TR=2.5 s, TE=235 ms, flip angle 90°,
resolution 0.98 × 0.98 × 1.1 mm3), and CT (Siemens, 120 kVp, dimen-
sions 512 × 512 × 247, resolution 0.5 × 0.5 × 1 mm3). These images do
not contain any focal lesions or tumors. There are no manual brain
masks available for this dataset. We chose this dataset so as to compare

the different stripping methods independently via CT, as CT provides
excellent contrast between brain and bone.

The sixth dataset, referred to as TUMOR-36, consists of 36 patients
with tumors. Instead of using pre-contrast images as before, this dataset
contains postcontrast T1-w images (Philips 3 T, TR=4.9 ms, TE=2.2 ms,
flip angle 15°, resolution 0.94 × 0.94 × 1 mm3), T2-w (TR=3375 ms,
TE=100 ms, flip angle 90°, resolution 0.43 × 0.43 × 5 mm3), and CT
(Siemens Biograph128 PET/CT, 120 kVp, dimensions 512 × 512 × 149,
resolution 0.59 × 0.59 × 1.5 mm3). We show that our method is robust
and can be generalized across different MR acquisition protocols when

other methods can have gross failures and inaccuracies, because they are
not optimized for postcontrast images.

For visual demonstration, 6 patients with severe TBI and congenital
malformations from an acute study are chosen to show the comparison
of MONSTR with competing methods. For this dataset, called Acute,
there is no manual ground truth available. The images are shown in
Fig. 1(c)–(d) and Fig. 10 for visual comparisons only. There are
MPRAGE (1 × 0.94 × 0.94 mm3) and T2-w (0.5 × 0.5 × 4 mm3) images
available for this dataset.

For all datasets, both T1-w and T2-w images (postcontrast T1 for
TUMOR-36) are used to generate the brain masks. Some postcontrast T1

images from TBI-19 dataset are used as atlases here. See Section 3.7
for details. If available, other image sequences such as PD or FLAIR,
can also be used in the algorithm. In our use, the combination of T1-w
and T2-w images provided excellent results without the need for
additional contrasts.

There is usually no unifying definition of what should be included
or excluded in the stripping protocol. For example, BET (Smith, 2002)
and BSE (Shattuck et al., 2001) include some part of the brainstem,
SPECTRE (Carass et al., 2011) includes the transverse and sagittal
sinuses in the brainmask, while BEaST (Eskildsen, 2012) excludes
them. ROBEX and SPECTRE include the subarachnoid CSF in the
brainmasks, but BEaST is generally more aggressive in removing CSF,
especially near the parietal lobe. In this paper, while delineating the
brainmasks of TBI-19 data, we included subarachnoid CSF, GM, WM,
ventricles (lateral, 3rd, 4th), and cerebellum in the brainmask, but
excluded the sinuses, eye, fat, skull, dura, and bones. The brainmasks
of NAMIC-20 and MRBrainS-5 data already conform to this definition.
This definition is consistent with what many would consider to be the
intracranial volume, a useful measure for normalization in volumetric
analyses (Malone et al., 2015).

2.2. Preprocessing

The brain masks are generated in the space of the T1-w images. T2-
w images are rigidly registered (Avants et al., 2011) to the T1-w images.
For robustness in registration, necks were removed from the images
using FSL robustfov. All MR images are corrected for intensity

Table 1
Approximate ANTS parameters are shown in this table.

Transform -t Metric -m Iterations -m Smoothing
Sigma -s

Shrink
Factor -f

Rigid Mattes 100 × 50 × 25 4 × 2 × 1 3 × 2 × 1
Affine Mattes 100 × 50 × 25 4 × 2 × 1 3 × 2 × 1
SyN CC 100 × 1 × 0 1 × 0.5 × 1 4 × 2 × 1

Fig. 2. An example of T1-w, T2-w and registered atlases are shown. 4 atlases are registered via approximate ANTS (see Section 2.3) to a subject T1-w image. The average of the
transformed atlas brain masks are overlaid on the subject. The color indicates initial fuzzy brainmask. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

6 http://insight-journal.org/midas/collection/view/190.
7 http://mrbrains13.isi.uu.nl/.
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inhomogeneities by N4 (Tustison et al., 2010). Since the scaling of MR
image intensities is not standardized, the images were scaled linearly so
that the modes of the WM intensities of T1 and T2 images were set to
the values of 1 and 2, respectively. The modes were automatically
detected using a kernel density estimator (Pham and Prince, 1999). T2-
w images set to a higher intensity scale than T1-w images to give them a
higher weight in the subsequent patch matching, since they usually
provide superior contrast to distinguish brain and CSF from skull and
dura.

2.3. Method

The proposed method uses a combination of registration and patch
matching. Following a coarse registration, patches from the subject are
matched to similar patches from atlases. A patch is defined as a
p q r× × 3D sub-image around a voxel. Typically p q r= = , and we
used 3 × 3 × 3 patches in our experiments. A subject is defined as a
collection of images s s{ ,…, }M1 , where M is the number of image
contrasts. In our case, we used T1-w and T2-w contrasts, therefore
M=2. All s k M, = 1,…,k , are assumed to be coregistered. A subject
patch at the ith voxel is denoted by is( ). We define is( ) to be a
concatenation of the ith patches from each of the M contrasts, hence

is( ) ∈ Md×1, where d=pqr. An atlas is a collection of M + 1 images,
a a a{ ,…, , }t

M
t

M
t

1
( ) ( )

+1
( ) , where a k M, = 1,…,k

t( ) , are the MR images for the tth
atlas, and aM

t
+1

( ) denotes the binary brain mask, t T= 1,…, , T being total
number of atlases. The atlas MR patch at the jth voxel, denoted by

ja ( )t
1
( ) , is the concatenation of M patches at voxel j from each of

a k M, = 1,…,k
t( ) , ja ( ) ∈t Md

1
( ) ×1. The jth patch of the brain mask aM

t
+1

( ) is
denoted by ja ( ) ∈t d

2
( ) ×1. The elements of ja ( )t

2
( ) are 0 and 1. Without

loss of generality, we assume that s1 and a t
1
( ) are T1-w images.

As mentioned earlier in Section 1, a t
1
( ) is registered to s1 via

“approximate ANTS”. The parameters used are shown in Table 1.
Essentially, after the affine step, the deformable registration SyN is
applied on the subsampled (by 4) a t

1
( ) with 100 iterations. The rest of

the parameters are set as default. This approximate ANTS takes about 2
minutes between two 256 × 256 × 160 images having 1 mm3 resolution
on Intel Xeon 2.80 GHz 20-core processors. On the same setting,
FLIRT (Jenkinson and Smith, 2001) takes about 1.5 minutes, MINC
bestlinreg_s (Collins et al., 1994) takes about 2.5 min, ANTS with
affine setting (antsaffine.sh) takes about 30 s, and IRTK8 areg2
takes about 1.5 min. Note that only ANTS takes advantage of parallel
processing, while other registration methods use a single core. We

Fig. 3. The figure shows an independent evaluation scheme of brain masks via CT images. (a)–(b) show T1-w and T2-w images of one patient from MOV-32 dataset, where the brain
mask from BEaST is overlaid on (c) the CT. A zoomed view of the CT is shown in (d), where two voxels on the brain mask boundary are considered (black boxes). A 3 × 3 × 3
neighborhood is chosen for each boundary voxel. In that neighborhood, “inside” and “outside” voxels (yellow and red boxes, respectively), are considered, as obtained from the binary
mask,. The ratio of median CT intensities of “outside voxels” (red boxes) and “inside voxels” (yellow boxes) is computed for every boundary voxel. If the ratio ≫1 (e.g., upper voxel #1),
then that voxel (#1) is on brain-skull boundary. If the ratio ≈1 (e.g., lower voxel #2), then it is completely within brain or within bone. A high ratio is desired for a good stripping mask.
See Section 2.5 for details. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

8 https://github.com/BioMedIA/IRTK.
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chose to use a coarse deformable registration because it provides better
matching than affine, while taking similar computation time as other
popular affine registration tools. Also, by using SyN with only a few
iterations on subsampled images, local minima can be avoided,
especially when images have significant pathology as shown in Fig. 1.

Once the atlases a t
1
( ) s are registered to s1, the corresponding atlas

images and brain masks a a,…,t
M
t

2
( )

+1
( ) are also transformed to the subject

space using the same deformation. For simplicity of notation, from now
on, we denote the registered atlases by a a t T{ ,…, , = 1,…, }M

t
1
(1)

+1
( ) . A

thresholded version of the average of the registered atlas brain masks
a a{ ,…, }M M

T
+1

(1)
+1

( ) at 0.5 provides an initial estimate of the subject brain
mask. To reduce computational overhead, voxels within a narrow band
of the initial estimated brain boundary are considered. An example is
shown in Fig. 2, where 4 atlases are registered to a subject, and the
average of the transformed atlas brain masks are overlaid on the
subject. The average is thresholded at 0.5 to generate the initial subject
brain boundary. A narrow band size parameter of w, defined in voxel
units, controls the amount of dilation and erosion of the subject brain
mask are matched to atlas patches. The size of the narrow band is
estimated using a cross-validation strategy, as described later in
Section 3.1.2.

For a patch at voxel i within that narrow band, a neighborhood Ni of
radius s is first defined, where Ni is a 3D neighborhood of size

s s s(2 + 1) × (2 + 1) × (2 + 1) with the center voxel being i. Next, for
the subject patch is( ), a few relevant atlas patches are chosen from the
set j j N t Ta{ ( ), ∈ , = 1,…, }t

i1
( ) using a sparse matching criteria that we

now define mathematically. For every subject patch is( ), an atlas MR
patch collection A i( )1 and brain mask patch collection A i( )2 can be
defined as the collection of all atlas MR and brain mask patches in the
neighborhood Ni as follows,

 

A i j j A i j j j N

A i A i

a a a a( ) = [[ ( )] …,[ ( )] ], ( ) = [ [ ( )] …, [ ( )] ], ∈ ,

( ) ∈ , ( ) ∈

T T
i

Md N T M N T

1 1
(1)

1
( )

2 2
(1)

2
( )

1
×| |

2
×| |i i (1)

where N s| | = (2 + 1)i
3 is the total number of voxels within the

neighborhood. Each ja[ ( )]t
1
( ) is a Md N× | |i matrix of all MR patches

within Ni from the tth atlas. Similarly ja[ ( )]t
2
( ) are brain mask patches.

Therefore A i( )1 contains all MR atlas patches within Ni from T atlases.
Since the subject and atlases are registered, we assume that given a
sufficient number of atlases and a large enough neighborhood size s, it
is likely a few atlas patches from A i( )1 can be found that are similar to

is( ), and their convex combination produces the subject patch is( ). The
sparse patch matching criteria (Roy et al., 2015a) is written as,

i A i i i i i N Ts x x 0 x x( ) ≈ ( ) ( ), ( ) ≥ , ( ) ∈ , ∥ ( )∥ ≪ | | ,N T
i1

| | ×1
0i (2)

where ix( ) is a sparse vector containing positive weights for a few
similar patches, and is zero otherwise, indicated by the small ℓ0 norm,
i.e., number of non-zero elements. The non-negativity constraint on

ix( ) enforces similarity between textures of is( ) and the contributing
atlas patches.

Since a direct solution of Eq. (2) requires combinatorial complexity
(Donoho, 2006), we use elastic net regularization (Zou and Hastie,

Fig. 4. (a) Dice coefficients between brain masks generated by MONSTR and manual masks are plotted for the ADNI-29 dataset. 6 subjects are chosen as atlases and the remaining 23
subjects are stripped using 1 − 6 atlases. (b) Dice coefficients of 25 subjects are plotted for various search window sizes from s=1 (3 × 3 × 3) to s=6 (13 × 13 × 13). Number of atlases
used is 4.

Fig. 5. Figure shows MPRAGE and T2 images of two subjects from ADNI-29 dataset along with the stripping masks from 5 algorithms overlaid on T2. While BEaST and SPECTRE
overestimate by including some skull and fat in the mask (yellow arrows), OptiBET and ROBEX underestimate by removing some CSF (green arrows). MONSTR generates a
comparatively better mask by considering multiple contrasts. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

S. Roy et al. NeuroImage 146 (2017) 132–147

137



2005) to solve Eqn. (2) by minimizing both ℓ1 and ℓ2 norm of ix( ),

α α α αi i A i λ λx s 0( ) = arg min ∥ ( ) − ( ) ∥ + ∥ ∥ + ∥ ∥ , ≥ .
α

1 2
2

1 1 2 2
2

(3)

The first term ensures that the subject patch matches to the convex
combination of atlas patches. The second term allows only a few atlas
patches to be selected, while the third term is a ridge regression
penalty. Penalizing both the ℓ1 and ℓ2 norm enforces grouping of several
similar looking atlas patches (Zou and Hastie, 2005), while keeping the
total number of chosen patches (i.e. having non-zero weight) low. Eqn.
(3) is solved using the SPASM9 toolbox (Mairal et al., 2014). To get a
meaningful estimate of ix( ) from Eqn. (3), the vector is( ) and columns

of A i( )1 are normalized to have unit ℓ2 norm (Roy et al., 2013a). The
parameters λ1 and λ2 were both fixed at 0.01, which empirically
provided a stable solution for a wide variety of experiments.

For every patch within the narrow band, once the sparse weight x(i)
is computed, corresponding brain mask patches were combined using
the same weight as,

i A i is x^( ) = ( ) ( ),2 (4)

where iŝ ( ) is a membership value between 0 and 1 representing the
bain mask at the ith voxel. After the brain mask membership is
computed, it is thresholded at 0.5. As a brain-skull boundary is
biologically expected to be smooth, the boundary of the mask is
smoothed (Desbrun et al., 1999) so that the maximum curvature of
the boundary does not exceed 0.3. Smoothing has little impact on

Fig. 6. (a) Dice coefficients and (b) average symmetric surface distances (dS) between automated and manual brain masks are plotted for 25 subjects from ADNI-29 dataset. MONSTR
produces significantly higher Dice (p < 0.001) and lower dS (p < 0.001) compared to the other 4 methods.

Fig. 7. Figure shows MPRAGE and T2 images of a patient with schizophrenia from NAMIC-20 dataset along with the stripping masks from 5 algorithms overlaid on T2. Similar to the
ADNI-29 dataset, BEaST and SPECTRE include some skull and marrow (yellow arrow), while ROBEX and OptiBET exclude some subarachnoid CSF (green arrow). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. (a) Dice coefficients and (b) average symmetric surface distances (dS) between automated and manual brain masks are plotted for 16 subjects from NAMIC-20 dataset. MONSTR
produces significantly higher Dice (p < 0.001) and lower dS (p < 0.001) compared to the other 4 methods.

9 http://spams-devel.gforge.inria.fr/.
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numerical performance, but produces qualitatively more realistic
boundaries.

2.4. Optimization of competing methods

OptiBET uses FSL atlases for registration purposes but not for
training data, hence we did not change it on every dataset for OptiBET.
The ROBEX package includes its own atlas, which is not easy to modify.
We were not able to determine how to use an external atlas with
ROBEX. Nonetheless, ROBEX with its default atlases has been shown
to be robust and accurate across datasets with variable scanners. The
other methods were tested under the same training data conditions.
For every dataset (except TBI-19, see Section 3.5 for details), we
randomly chose 4 subjects within that dataset as atlases in SPECTRE,
BEaST, and MONSTR, and skullstripped the remaining using those
atlases. For BEaST, since left-right flipped atlases are used in conjunc-
tion with the originally provided atlases, the effective number of atlases
is 8. Although BEaST and MONSTR use actual image intensities from
atlases for computing the final mask, SPECTRE uses them only for
registration and initial brain mask generation.

2.5. Evaluation criteria

For the ADNI-29, NAMIC-20, and TBI-19 datasets, the manual

ground truth masks are available. Therefore we used two metrics, Dice
and average symmetric surface distance (dS). Dice coefficient between
two binary images A and B is defined as A B

A B
2 | ∩ |
| | + | |

, where |·| indicates
number of non-zero voxels. The average symmetric surface distance dS
(Geremia et al., 2011) between two masks M1 and M2 is defined as
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where M∂( )1 and M∂( )2 indicate boundaries of M1 and M2, d (·,·)
indicates Euclidean distance. This is a robust and symmetric modifica-
tion of the Hausdorff distance.

For the TUMOR-36 and MOV-32 datasets, manual brain masks are
not available. Therefore we used CT to independently validate the
masks. CT is not actually used in the computation of the brainmasks,
rather it is only used for validation. CT images of each subject were
rigidly (Avants et al., 2008) registered to the corresponding T1. Note
that any systematic registration errors from rigid registration would
affect the performance of all methods equally. Hounsfield units (HU) at
a voxel indicates if the voxel is soft tissue (<150) or bone (>300). Based
on CT, we define a metric based on the percentage of boundary voxels
that are erroneous, i.e., the ratio between the boundary voxels that are
completely within bone or brain and the total number of boundary
voxels. Fig. 3(a)–(c) shows T1-w, T2-w and CT scans of a patient from
the MOV-32 dataset. A brain mask from BEaST is overlaid on the CT
image (Fig. 3(c)). For every voxel on the boundary (black boxes in
Fig. 3(d)), we define a 3 × 3 × 3 neighborhood (Fig. 3(e)). The ratio
between the median CT HU of the “outside voxels” (red boxes) and
inside voxels (yellow boxes) is computed for the center voxel (black
boxes), which lies on the brain mask boundary. For an accurate
boundary, the computed number is the ratio between average bone
HU and average soft tissue HU, such as voxel #1 in Fig. 3(d). For
under-estimation (e.g., voxel #2), both the median HU numbers are
from brain, while for over-estimation both numbers will be from bone.
For both under and over-estimations, the ratio is ≈1. Therefore if it is
≫1, then that brain mask boundary voxel (voxel #1 in Fig. 3(d)) should
be accurate and should lie on the true brain-skull boundary. We
compute the percentage of boundary voxels that have a ratio ≤1.

3. Results

In our experiments, the run-times of BEaST, SPECTRE, OptiBET

Fig. 9. The figure shows T1 and T2-w images of a patient with severe TBI from the TBI-19. The manual brainmask is overlaid on the T2. The stripping masks from 5 different stripping
methods are compared. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Leave one out cross validation of 5 subjects from MRBrainS-5 data is shown. Bold
indicates maximum Dice or minimum surface distances (dS) among the 5 methods.

Subject #

1 2 3 4 5 Mean

Dice BEaST 0.9705 0.9496 0.9579 0.9574 0.9687 0.9608
SPECTRE 0.9318 0.9250 0.9334 0.9301 0.9282 0.9297
OptiBET 0.9490 0.9488 0.9388 0.9315 0.9266 0.9409
ROBEX 0.9431 0.9425 0.9375 0.9274 0.9353 0.9372
MONSTR 0.9653 0.9717 0.9659 0.9712 0.9731 0.9695

dS BEaST 1.11 1.66 1.32 1.26 1.24 1.32
SPECTRE 1.89 2.24 1.97 2.03 2.14 2.06
OptiBET 1.59 1.56 1.84 1.68 1.78 1.69
ROBEX 1.62 1.61 1.69 1.70 1.67 1.66
MONSTR 1.17 1.11 1.13 1.01 1.13 1.11
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Fig. 10. The figure shows comparison of skull stripping performance in the presence of large arachnoid cysts and extraxial fluid collections/hematomas in various locations. Four cases
from the Acute dataset (see Section 2.1 for details) are presented, where original MPRAGE and T2-w images are shown. (a) shows a large infarct and an overlying extraaxial fluid
collection. Only MONSTR completely segments the intracranial contents. (b) shows two extraaxial collections, a chronic subdural hematoma on the right and a subacute epidural
hematoma on the left. (c) shows a large posterior fossa arachnoid cyst/mega cisterna magna. (d) shows a large middle cranial fossa arachnoid cyst. MONSTR virtually completely
segments the intracranial contents in (a)–(c), and nearly completerly segments in (d), where the performance of MONSTR is still superior in comparison to the other methods. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. (a) Dice coefficients and (b) average symmetric surface distances (dS) between automated and manual brain masks are plotted for 16 subjects from TBI-19 dataset. MONSTR
produces significantly higher Dice (p < 0.001) and lower dS (p < 0.001) compared to the other 4 methods.
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and MONSTR are similar, averaging 15 − 20 min for 1 mm3 resolution
images on a server with two Intel Xeon 2.80 GHz 10-core processors.
ROBEX takes only 3 − 4 min, mostly because the generative model is
pre-computed unlike the other methods, which compute their own
models on-the-fly. For MONSTR, 4 registrations take about 8 minutes,
and 8 − 10 min are spent on patch-matching. MONSTR and ROBEX
are optimized to use multiple cores, while BEaST, OptiBET, and
SPECTRE are not.

Some parameter tuning was also performed for SPECTRE and
BEaST to achieve optimal results. ROBEX does not offer any free
parameters and we were unable to determine how to modify its atlas.
We varied the number of atlases for SPECTRE but its performance did
not vary greatly because the atlases are only for obtaining initial brain
masks. We also optimized parameters for BEaST and found that the
default parameters were most robust. Although our experiments used 4
atlases with BEaST, in the Supplemental material we evaluate its
performance with additional atlases. OptiBET was run with default
atlases and parameters. All statistical comparisons were performed
with paired Wilcoxon signed rank test.

This section is organized as follows. First, we evaluate the number
of atlases and the search radius in Section 3.1. Then we compare

MONSTR with the other 4 methods, BEaST, SPECTRE, OptiBET, and
ROBEX, in Sections 3.2–3.7 on the 6 datasets as described in Section
2.1. Next, we evaluate the differences in performance of MONSTR
between using only the T1 contrast and the addition of multiple
contrasts in Section 3.8. The effect of resolution on the stripping result
is then explored in Section 3.9. Finally, the effect of choosing atlases
from different scanners, acquisition protocols, or resolutions, other
than ones from the same dataset, is described in Section 3.10.

3.1. Parameter optimization

The algorithm has 4 important parameters: patch size, the number
of atlases T, the size of the narrow band around the initial brain
boundary, and the radius (s) of the search neighborhood Ni. In
practice, we chose the width of narrow band to also be s to reduce
number of parameters. The patch size is kept fixed at 3 × 3 × 3, because
we have experimentally found that increasing patch size to 53 or higher
exponentially increases the required memory and computation time,
while not significantly improving the stripping results. In this section,
we describe a cross validation strategy to estimate these parameters T
and s. We used the ADNI-29 dataset because it has the highest number

Fig. 12. Percent of erroneous boundary voxels (Section 2.5) are shown for (a) MOV-32 and (b) TUMOR-36 datasets.

Fig. 13. Postcontrast T1 and T2 images of a patient from TUMOR-36 are shown, along with brain masks obtained from 5 methods.

Table 3
Dice coefficients and surface distances (dS) obtained from the 5 different methods are shown for ADNI-29, TBI-19 and NAMIC-20 datasets. An asterisk indicates statistical significance
(p < 0.001) using paired Wilcoxon signed rank test over all the other competing methods.

BEaST SPECTRE OptiBET ROBEX MONSTR

Dataset Dice dS Dice dS Dice dS Dice dS Dice dS

ADNI-29 0.9590 1.35 0.9356 2.38 0.9491 1.61 0.9450 1.75 0 9694. * 1 15. *
NAMIC-20 0.9713 1.17 0.9427 2.47 0.9583 1.67 0.9558 1.71 0 9833. * 0 78. *
TBI-19 0.9425 2.03 0.9316 2.71 0.9602 1.45 0.9563 1.49 0 9811. * 0 84. *
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of subjects with manual brain masks. To estimate each parameter, we
keep the other ones fixed. Approximate ANTS parameters (Table 1) are
empirically chosen so as to keep the runtime similar to an affine
registration, as described in Section 2.3.

3.1.1. Number of atlases
The number of atlases is an important parameter in most skull-

stripping methods. As mentioned earlier, label fusion based methods
(Doshi et al., 2013; Heckemann et al., 2015; Leung et al., 2011) need
significantly larger number of atlases compared to patch based
methods. For example, the suggested number of atlases is 60 in
Pincram (Heckemann et al., 2015). This is because registration
algorithms are not always able to obtain accurate results due to
anatomical variability, and more atlases are needed to compensate.
In comparison, we show that MONSTR needs only a few atlases, partly
because the patch matching step reduces the dependency on accurate
registrations for voxel based fusion. We arbitrarily chose 6 subjects as
atlases, and generated the brain masks for the remaining 23 using1 − 6
atlases. The narrow band width around the initial boundary and the
patch search window size was fixed at s=5 voxels (11 × 11 × 11 search
window).

Fig. 4(a) shows Dice coefficients from 23 subjects when MONSTR
brain masks are compared with the manual ones. Median Dice
coefficients are 0.9588, 0.9665, 0.9693, 0.9712, 0.9718, and 0.9709
for 1 − 6 atlases. The median Dice coefficient for 4 or more atlases are
not significantly different (p > 0.05 between each pairs), while 3 or less
atlases produce significantly lower Dice (p < 0.001, Wilcoxon sign-rank
test) than 4 or more atlases. Hence, we use the same 4 atlases for the
remaining experiments for BEaST, SPECTRE, and MONSTR.

3.1.2. Search window size
If the registrations are accurate, then smaller search windows are

sufficient. Generally higher window size requires more computation
time and memory. For every subject patch, a window s=4 (i.e.,
searching within a 9 × 9 × 9 neighborhood) indicates that Eq. (3) is
solved for A i( )1 using N T| | = 2916i atlas patches. Therefore more
accurate registrations are preferred so as to reduce the computational
overhead of solving Eq. (3). For images with TBI or tumor, we expect
that higher window sizes may facilitate stripping, as registrations may
be sub-optimal due to presence of pathologies. However, instead of
optimizing the parameter on every dataset separately, we optimize the
radius once and use it for rest of the experiments.

Fig. 4(b) shows the Dice coefficients for 25 subjects from the ADNI-
29 dataset between automated and manual masks for window sizes
from s=1 to s=6. Statistically significant improvement (p < 0.05) is
observed for s = 4, 5, 6 compared to s = 1, 2, 3. Although s=4 provides
the best result, the Dice improvement from s=3 to s=4 is small (median
Dices 0.9690 to 0.9694). The standard deviations are similar for s=2 or
higher (0.0048 for s=2), while it is large for s=1 (0.0100). Also there
was one outlier in s=1 with Dice<0.92, which improved after increasing
the window size. We use s=4 for rest of the experiments.

3.2. ADNI-29 Dataset

We compared the performance of MONSTR against the other
methods on healthy brains from the ADNI-29 dataset. Fig. 5 shows
two subjects from the ADNI-29 dataset along with brain masks
obtained from the 5 methods and the manual one. It is sometimes
difficult to distinguish between marrow and GM solely based on T1-w
images. Similarly both CSF and skull have similar intensities. This is

Fig. 14. (a) Dice coefficients for NAMIC-20 dataset are shown when only T1 and only T2 images are used for skull-stripping in the MONSTR framework, as compared to the complete
multi-channel T1 and T2 images. (b) The effect of resolution is shown on the NAMIC-20 dataset, when the images are downsampled in the inferior-superior direction by a factor of 2 − 5.

Fig. 15. Each of (a) ADNI-29, (b) NAMIC-20, and (c) TBI-19 datasets are stripped with atlases chosen from the other two. See Section 3.10 for details.
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illustrated in Fig. 5, where the first 4 methods, using only the
MPRAGE, can overestimate the mask either by including skull and
marrow (yellow arrows) or underestimate by excluding CSF. T2

provides better contrast between CSF and skull. Hence MONSTR
produces comparatively better stripping by using multi-contrast in-
formation and visually matches closest to the manual one.

Fig. 6(a)–(b) shows quantitative improvement, where Dice coeffi-
cients and dS (see Section 2.5 for definitions) are plotted. The median
Dice coefficients for BEaST, SPECTRE, OptiBET, ROBEX and
MONSTR are 0.9590, 0.9356, 0.9491, 0.9450, and 0.9694, respec-
tively. Median dS are 1.35, 2.38, 1.61, 1.75, and 1.15 mm, respectively.
Dice coefficients of MONSTR are significantly higher and dS are
significantly lower (p < 10−4 for both) than other methods, indicating
superior performance. Note that while other methods have wide
variations in dS, MONSTR generates a very low variation. Standard
deviations of the surface distances are 0.49, 0.43, 0.25, 0.49, and 0.15,
indicating that the MONSTR brain masks are the most consistent and
robust. The standard deviations of Dice coefficients and dS from
MONSTR are significantly lower (F-test, p < 0.001) than all other
methods. See Supplemental material for comparison of MONSTR and
BEaST with more than 4 atlases.

3.3. NAMIC-20 dataset

Fig. 7 shows MR images and brain masks from the NAMIC-20
dataset obtained from the 5 methods, along with the manual mask,
overlaid on the T2-w image. Similar to the ADNI-29 dataset, BEaST
and SPECTRE include some skull and marrow in the mask (yellow
arrow), while OptiBET and ROBEX remove some CSF (green arrow).
We have found that generally BEaST and SPECTRE include some dura
and skull, especially near the parietal lobe. Also ROBEX and OptiBET
often exclude CSF. OptiBET, being a robust modification of BET, tries
to find an edge between brain and skull, therefore mislabeling some
CSF on MPRAGE as part of skull. MONSTR provides a better mask by
excluding dura and skull and including most intracranial CSF.
Quantitative improvement is shown for 16 subjects in Fig. 8, where
MONSTR has the significantly higher Dice coefficient 0.9833 (p < 10−4)
compared to the other methods, which are 0.9713, 0.9427, 0.9583,
0.9558 for BEaST, SPECTRE, OptiBET and ROBEX, respectively,
Similarly, MONSTR has the lowest dS (p < 10−4), 0.78 vs 1.17, 2.47,
1.67, 1.71. The standard deviations of Dice coefficients and dS from
MONSTR are significantly lower (F-test, p < 10−5) than all other
methods. Note that the median Dice (0.9833) and dS (0.78) for
MONSTR are better than those from the ADNI-29 dataset (0.9694
and 1.15). There are two reasons for this. (a) The NAMIC-20 dataset
has 1 mm3 isotropic T2 images, while ADNI-29 has T2 images with
3 mm thick slices. Masks computed with isotropic atlas images
generally produced more accurate performance. (b) ADNI-29 brain-
masks were delineated on T1 images, while NAMIC-20 brainmasks
were delineated on T2. For stripping purpose, the T2 images are
advantageous. So we believe the masks are of better quality for the
NAMIC-20 data than the ADNI-29 data.

3.4. MRBrainS-5 dataset

Since the MRBrainS-5 dataset has only 5 subjects, we did a leave
one out cross validation. The quantitative results are shown in Table 2,
where Dice coefficients and dS for each subject are listed. MONSTR
outperforms SPECTRE, OptiBET, and ROBEX on all 5 subjects in
terms of both Dice and dS, while BEaST produces higher Dice and
lower dS on one subject than MONSTR. Nevertheless, MONSTR has
the highest average Dice and lowest average dS. Since there are only 5
subjects, any statistical test will have insufficient power to claim
significance.

3.5. TBI-19 dataset

The effect of T2 in stripping is most prominent in the presence of
TBI, where hemorrhages and lesions can be hypointense like the skull
in MPRAGE. Therefore, the T2 image provides sufficient contrast to
distinguish blood from skull. For this dataset, 4 patients were carefully
chosen as atlases using the following criteria, (1) they have mild TBI,
(2) there is very little or no visual presence of hemorrhages or lesions.
The reason is that there is no publicly available dataset with TBI, where
multi-contrast images as well as manually drawn brain masks are
available. Therefore we want MONSTR to work well with available
normal atlases (like ADNI-29) so that it is useful to the community
when optimal atlases may not be available. More details about the
effect of different atlases from different datasets can be found in
Section 3.10.

Examples are shown in Fig. 9, where images of one patient with
severe TBI from the TBI-19 dataset are shown. As before, BEaST
underestimates the mask by stripping the hemorrhage (yellow arrow),
while SPECTRE includes some skull (green arrow). OptiBET and
ROBEX generally perform better than BEaST and SPECTRE, while
MONSTR is consistently better than all four methods. Four other
patients from the Acute dataset (see Section 2.1 for details) are shown
in Fig. 10, for which manual brain masks are not available. Visually, it
is clear that in these extreme cases, MONSTR produces the best brain
mask by excluding skull and including most of the intracranial
contents. Some errors are still noticeable, e.g. Fig. 10(d), blue arrow.
A possible reason is that the parameters such as number of atlases and
search radius are chosen based on normal subjects (Section 3.1), which
may not be optimal for these extreme cases. Nevertheless, MONSTR
clearly outperforms the other methods by including the lesions and
excluding dura and skull.

Quantitative comparisons are shown in Fig. 11(a), where the
median Dice coefficient from 15 patients is 0.9811 for MONSTR,
compared to 0.9425, 0.9316, 0.9602, 0.9563 for BEaST, SPECTRE,
OptiBET, and ROBEX, respectively. Median dSs (Fig. 11(b)) are 2.03,
2.71, 1.45, 1.49, and 0.84. Using a paired Wilcoxon signed rank test,
both Dice and dS of MONSTR are significantly better (p = 4 × 10−4)
than the other 4 methods. Also the standard deviations of Dice
coefficients from MONSTR are significantly lower (F-test, p < 10−4)
than all other methods. Note that median Dice of BEaST is lower than
that of ADNI-29 (0.9605) and NAMIC-20 (0.9713) datasets, because
BEaST usually removes most of the hemorrhages. OptiBET and
ROBEX are comparable on this dataset (p > 0.05 for both Dice and

Table 4
Dice coefficients obtained from MONSTR on 3 different datasets are shown, when the atlases are drawn from other datasets. Asterisks indicates statistical significance over using the
other two atlases. The p-values are shown for pairwise comparison between results with the atlas set from the same database vs the chosen atlas set.

Atlas ADNI-29 NAMIC-20 TBI-19

Dice p Dice p Dice p

Subject ADNI-29 0.9694** 1 0.9563 <10−4 0.9646 <10−4

NAMIC-20 0.9746 0.0004 0.9833** 1 0.9811 0.0020
TBI-19 0.9763 0.0004 0.9765 0.0004 0.9811** 1
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dS). Dice and dS from all methods for these three datasets are shown in
Table 3.

3.6. MOV-32 dataset

As mentioned in the Section 2.1, there is no manually segmented
brain mask for this dataset. Hence CT images are used to indepen-
dently compare different methods. We use the same atlases from TBI-
19, as both sets have high resolution T2. As described in Section 2.5,
the percentage of erroneous boundary voxels is computed for each
method, where an erroneous boundary voxel is one for which the ratio
of median “outside voxels” HU and median “inside voxels” HU in a
3 × 3 × 3 patch around it is ≤1. Fig. 12(a) shows a boxplot of %
erroneous voxels. MONSTR produces significantly lower (p = 10−6)
percentage of erroneous voxels (median 19.17%), compared to the
other four, 48.77%, 77.01%, 36.34%, and 48.03%, for BEaST,
SPECTRE, OptiBET and ROBEX, respectively.

3.7. TUMOR-36 dataset

This experiment shows the robustness of MONSTR with post-
contrast T1-weighted images. We chose the same 4 images that were
used as atlases in the TBI-19 dataset, but used their post-contrast T1

and T2 images. These 4 atlases were also used for BEaST and
SPECTRE. ROBEX and OptiBET were run with default atlases. Each
brain mask from each method was visually checked for gross failures.
The segmentation was considered to be a failure when either 1) the
brain mask was completely blank or 2) the mask encompassed the
whole head, including skull,fat, and eyes, indicating that minimal tissue
had been removed. BEaST failed on 25 subjects, and OptiBET failed on
1. There were no failures for ROBEX and MONSTR.

Fig. 12(b) shows the % of erroneous boundary voxels for the 5
methods, of which MONSTR produces the least error (p < 10−5 with
Wilcoxon rank-sum test). Since the number of valid brain masks for
each method are different, we did not use a paired test. There were
33.34% erroneous boundary voxels in MONSTR compared to only
19.17% in MOV-32 dataset. This is attributed to the fact that post-
contrast T1 is not optimal for stripping purposes because the brain-
skull boundary do not have enough contrast. However, the use of the
T2-w images helps MONSTR to achieve lower errors than other T1

based methods. Fig. 13 shows images of one subject.Although, all 5
methods have visible errors of various degrees, the MONSTR brain
mask respects the T1 boundary more compared to others.

3.8. Effect of multi-contrast images vs only T1

In this section, we evaluate the contribution of different contrasts
by stripping with only the T1 or T2 images. We use NAMIC-20 dataset
for this purpose because both isotropic T1 and T2 images available.
Although there were 10 subjects with schizophrenia, their images do
not contain any cortical lesions, tumors, or hemorrhages, like the TBI-
19 or TUMOR-36 data. We chose M=1, and set a t

1
( ) as T1-w and T2-w,

respectively. Fig. 14(a) shows the Dice coefficients for each case.
Median Dice coefficients are 0.9783, 0.9587, and 0.9833 for T1-w,
T2-w, and the multi-contrast T T+1 2-w images. A paired sign-rank test
shows multi-contrast skull-stripping outperforms both single channel
results (p = 4 × 10−4 for both). Lower performance using only T2-w
images is attributed to our observation that sometimes T2-T2 atlas
registrations were worse than T1-T1 registrations. Nevertheless, the
addition of a separate T2 channel improves the Dice (0.9783 to 0.9833)
even for these lesion-free brains. Also MONSTR using only a T1 image
can still outperform other methods, which are also only T1 based. See
Supplemental material for more results.

3.9. Effect of resolution

In this section, we explore the effect of resolution in the patch
matching framework and show the necessity of high resolution atlases.
We again used the NAMIC-20 dataset for this experiment. Although
high resolution 3D T1-w images are common in clinical scans, often T2

images are acquired using 2D sequences and with lower resolution out
of plane. To simulate a 2D T2 acquisition, we averaged and down-
sampled the 1 mm3 isotropic T2 images in the inferior-superior (I-S)
direction to 2 − 5 mm and then used the downsampled images
( r1 × 1 × mm3, r=2,…,5) along with the original isotropic T1 in the
MONSTR framework. As described in Section 2.2, downsampled T2

images were first interpolated by cubic b-spline interpolation to the
dimension of corresponding T1.

Fig. 14(b) shows Dice coefficients of 16 subjects with varying
downsampling factors. Median Dice coefficients were 0.9833, 0.9829,
0.9819, 0.9810, for downsampling factors of 2 − 5. Using a Wilcoxon
signed rank test, Dice coefficients from r mm images are lower
(p < 0.05) than the downsampled images for r − 1 mm, r = 3, 4, 5,
while there is no significant difference in Dice between 1 mm3 and
1 × 1 × 2 mm3 images. Note that these numbers are not directly
comparable to the ADNI-29 data because (1) the brain masks were
delineated on T1-w images on ADNI-29 data while they were drawn on
T2 images in this data, (2) the atlases used in ADNI-29 data had 3 mm
I-S resolution interpolated to 1 mm3 isotropic, while the atlases in this
experiment have native 1 mm3 resolution. However, the numbers are
comparable to the results in TBI-19 data (median Dice 0.9811), which
also had high resolution T2. The Dice with 5 mm I-S resolution
(0.9810) is still significantly (p=0.004) better than BEaST (0.9713),
which had the best performance among the other 4 T1 based methods.
Therefore this result highlights both the importance of having high
resolution atlases as well as a second contrast.

3.10. Effect of atlases from different datasets

In all of the previous experiments, we have chosen atlases from
within the datasets, so that the intensity based patch-matching is based
on identical contrasts. In practice, however, it is sometimes difficult to
obtain atlases acquired with identical sequences to the data under
study, primarily because manual delineations of brain masks are
tedious and time-consuming. Therefore ideally the performance of a
good stripping algorithm should not degrade much when atlases from
different datasets are used. In this section, we explore how the choice of
atlases from different sites and scanners affect the performance of
MONSTR. Three datasets, ADNI-29, TBI-19, and NAMIC-20 are used
for these experiments. For every dataset, we use the same 4 atlases
from the other two datasets, which were chosen in the original
experiments, i.e. Sections 3.2, 3.3, and 3.5. Note that while ADNI-29
and TBI-19 have MPRAGE, NAMIC-20 has SPGR T1-w images.

Fig. 15(a)–(c) shows Dice coefficients of three datasets, ADNI-29,
TBI-19, and NAMIC-20, respectively. As expected, for every dataset,
the atlases chosen from the same dataset produces the highest Dice.
Median Dice coefficients and corresponding p-values when compared
with results from other atlas sets are shown in Table 4. For ADNI-29
(Fig. 15(a)), the median Dice coefficients are 0.9646, 0.9563, and
0.9694 for TBI-19, NAMIC-20, and ADNI-29 atlases. ADNI-29 atlases
produce the highest (p < 10−4) Dice among the three. Also since
NAMIC-20 has SPGR, it produces smaller Dice than TBI-19
(p=0.09), although the difference is not statistically significant.
Similarly for the NAMIC-20 dataset, the median Dices are 0.9746,
0.9811, and 0.9833. In this case, NAMIC-20 atlases produces signifi-
cantly higher Dice than the other two (p=0.002 and p = 4 × 10−4),
because the images are SPGR compared to MPRAGE atlases in the
other two datasets. Finally, for the TBI-19 data, the median Dice
coefficients are 0.9763, 0.9765, 0.9811. In this case also, using TBI-19
atlases results in significantly higher Dice that the other two
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(p = 4 × 10−4). NAMIC-20 atlases produces more variation than both
the TBI-19 and ADNI-29 atlases (F-test, p < 10−9), indicating lower
robustness. Interestingly, for every dataset, the worst Dice is still better
or comparable to the best Dice among the other 4 competing methods.
For example, on the ADNI-29 dataset, both the NAMIC-20 and TBI-
19 atlases produce comparable Dice (0.9563 and 0.9646) to BEaST
(0.9590), p=0.71 and 0.38 respectively. On the NAMIC-20 dataset,
TBI-19 atlases produce comparable Dice (0.9746) to BEaST (0.9713)
(p=0.50), but the ADNI-29 atlases produce higher Dice (0.9811) than
BEaST (p=0.003). On the TBI-19 dataset, the NAMIC-20 atlases
produce comparable Dice (0.9763) to OptiBET (0.9602) (p=0.19),
but the ADNI-29 atlases produce higher Dice (0.9765) than OptiBET
(p = 4 × 10−4).

4. Discussion

We have proposed a fully automatic patch-based multi-contrast
skull-stripping algorithm called MONSTR, and have evaluated it
against 4 leading stripping algorithms BEaST, SPECTRE, OptiBET,
and ROBEX. We have shown that by using multiple contrasts,
MONSTR produces more accurate results than the competing methods
on both healthy subjects, as well as subjects with pathologies such as
TBI and tumor. The software is available in http://www.nitrc.org/
projects/monstr. We have also proposed a novel independent way of
comparing stripping methods via CT in Sections 3.6 and 3.7. In acute
clinical studies, CT images are often acquired and can provide a relative
comparison of multiple stripping methods in the absence of a ground
truth. By using this approach, we avoid the necessity of generating a
”gold standard” brain mask from the CT.

MONSTR uses a sparse, convex combination of atlas patches to
reproduce a given subject patch. There are alternative ways to combine
atlas patches, such as the non-local weighting done in BEaST (Coupé
et al., 2012; Eskildsen, 2012). While both ways approaches have
merits, sparsity is advantageous when both subject and atlases have
pathologies, and are anatomically quite different. In regions corre-
sponding to tumors or other types of lesions, sparsity requires
contribution from only a few patches within the training data, whereas
non-local approaches will compute weights from a large patch set even
though many of those patches will likely be from healthy tissue. This
potentially enables the size of the training data to be smaller and still
yield good performance, as we showed in Section 3.1.1.

To validate our method, we chose 4 atlases from each dataset, and
stripped the remaining subjects with them. We found that the
particular choice of atlases had little effect on the performance of
MONSTR. This is shown in the Supplemental material, where we
evaluated the variability of the performance using a two-fold cross
validation on the TBI-19 dataset. Choosing atlases from the same
dataset is crucial, as shown in Section 3.10. In our experiments, we
have found that compared to 4 atlases chosen from the same dataset,
BEaST results were worse with default atlases,10 partly because the
default atlases were SPGR, while most of our experimental data is
MPRAGE. Therefore we did not show comparisons with default atlases.
Also note that BEaST was reported as not being optimized for brain
images with pathology (Eskildsen, 2012).

The number of atlases T is an important parameter in most atlas
based stripping methods. BEaST results may be suboptimal since the
recommended number of atlases is 20 (Eskildsen, 2012). See
Supplemental material for comparison of MONSTR and BEaST with
more than 4 atlases. However in practice, manually delineating 20
brain masks for every dataset is costly. In contrast, we have shown that
only 4 atlases suffice (Section 3.1.1) for MONSTR, and even using 3
atlases, the change in Dice coefficient is small from 0.9712 to 0.9693 on
ADNI-29 data. Also we have shown in Section 3.10 that MONSTR is

robust such that atlases from different datasets with different acquisi-
tions, scanners, and resolutions still produce better results than the
competing methods, especially on pathological brains. Therefore
MONSTR can be applied relatively easily for a variety of datasets.

Although many patch based methods have been proposed in the
past that can be straightforwardly extended to multi-contrast images
(Wang et al., 2014), one of the important aspect in our framework is
the combination of an approximate deformable registration, rather
than an affine registration to the patch-based framework. We did not
observe any failure of “approximate ANTS” even with severely patho-
logical brains, e.g. Fig. 10. This is due to the fact that fewer iterations
are used on a subsampled image. The “approximate” deformable
registration has two additional advantages. First, it helps to decrease
the runtime, as opposed to full ANTS (antsRegistrationSyN.sh),
which uses100 × 70 × 50 × 20 iterations for 4 levels by default. Second,
due to a better initialization, only a 9 × 9 × 9 search neighborhood
suffices in our experiments.

Only T1-w atlas images are registered to T1-w subject images and
the corresponding transformations are applied to the T2-w atlas
images, which were already coregistered to T1. This is preferred
because clinically acquired T2-w or FLAIR images may have thick
slices, which when combined with isotropic T1-w images in a multi-
channel registration framework, can produce sub-optimal registrations
(Zhao et al., 2016). Although the incorporation of T2 images improves
stripping, especially for pathological brains, this also limits applic-
ability if T2 images are not available, because many publicly available
datasets do not usually include T2. In absence or with low resolution T2

images, MONSTR can also use FLAIR images for stripping. Although it
is possible to use both the T2 and FLAIR images, we found little
improvement with this approach. Future work will consist of validation
with FLAIR or PD images. With the recent improvement of image
synthesis methods (Rousseau, 2008; Roy et al., 2013a; Jog et al., 2015;
Iglesias et al., 2013), we will explore the possibility of synthesizing T2

from T1 and using that as a substitute for original T2 scans.
The large number of failures when applying BEaST to the TUMOR-

36 data set could be partially attributed to poor registrations (based on
visual inspection) for 15 cases. However, even when registrations were
accurate, failures still occurred on 10 cases. This is likely because
BEaST was designed for standard T1-w images, rather than post
contrast images, which exhibit enhancement of the meninges and
vessels that bridge the subarachnoid gap between brain and the skull.
The presence of tumors and edema may have also played a role in the
failures. Thus, while improving the registration in BEaST may reduce
the number of failures, it would not eliminate them.

A drawback of our study is the relatively limited number of subjects
with pathology. These numbers can not represent an entire disease
population, and we would be hesitant to claim that any specific number
would be sufficient to do so. This is especially true for TBI, a highly
heterogeneous disease for which where there are currently no publicly
available data with manual segmentations. Our TBI-19 set contains a
mixture of mild, moderate, severe cases, and we were able to obtain
significant improvements with MONSTR over some competing ap-
proaches on 19 subjects. Similarly the populations of tumor and
movement disorders are in no way fully represented by our choice of
36 and 32 patients, but it is a sufficient number of subjects for which
we can obtain statistical significance between methods.
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