
nifti converter plugin for brainvoyager qx

Hester Breman
Brain Innovation B.V.

October 16, 2007

Contents

1 Introduction 2
1.1 Description . 2

1.1.1 The NIfTI-1 data format . 2
1.1.2 Changes in the NIfTI converter for BrainVoyager QX 2

1.2 Availability . 3

2 Structural design 4
2.0.1 Classes . 4
2.0.2 Swapping . 6
2.0.3 File naming . 6
2.0.4 Positioning . 7
2.0.5 Statistical data . 8

3 Functional design: the conversion procedure 9
3.1 Introduction . 9
3.2 Process flow . 9

3.2.1 reading . 9
3.2.2 conversion . 10
3.2.3 writing . 11

4 Platforms and differences 12

A Coordinate systems 13

B Transformations 14

1

Chapter 1

Introduction

1.1 Description

1.1.1 The NIfTI-1 data format

This is a description of the nifti-converter for BrainVoyager QX [2]. NIfTI-1 is the
new data standard defined by the Data Format Working Group (DFWG). For more
information about the data format, see http://nifti.nimh.nih.gov and [1].
It is also downloadable in *.chm and FlashHelp format from the BrainVoyager wiki
at http://wiki.brainvoyager.com/BVQX_Plugins. For other implementa-
tions, see http://niftilib.sourceforge.net.

1.1.2 Changes in the NIfTI converter for BrainVoyager QX

The nifti-converter has been completely refurbished because of portability limita-
tions and code maintenance reasons. Version 1.04 was only for Windows. The new
version (from 1.05) is cross-platform. Furthermore, the BrainVoyager QX plugin
access functions have been used to obtain access to the files instead of reading and
writing directly from and to disk. Finally, the implementation is based on C++
instead of C to a much larger extent, using inheritance and templates.

Document version: 0.3

Applicable to BrainVoyager QX version: 1.9

Applicable to plugin version: 1.05

Table 1.1: Byte order conversions
Platform (byte order) Import to BVQX Export to NIfTI-1
Windows XP use nifti1_io.h/c n/a
Mac PowerPC (Big Endian) use CoreFoundation.h n/a
Mac Intel (Little Endian) n/a n/a
Linux SUSE 10 (Little Endian) use nifti1_io.h/c n/a

2

1.2 Availability

During development, the intermediate plugins are placed on the BV wiki
(http://wiki.brainvoyager.com/BVQX_plugins) as fileheader-viewers. Con-
version functions will be added regularly and the updated versions will be placed
on the wiki. From October, 2007, the plugin and source code will be available from
the NITRC website at http://www.nitrc.org/.

3

Chapter 2

Structural design

2.0.1 Classes

The new structure will be the following (see figure 2.1):

• superclass neuroimagefile, with generic methods for reading and transform-
ing data; these are polymorphic classes

– subclass brainvoyagerfile

∗ subclasses bvfiles (vmr, fmr, vtc, vmp, ...)
· subsubclasses bvfiles (vmpar, vmpnr, ...)

– subclass niftifile

∗ subclasses niftifiles (nifti1, gifti, sifti, ...)

• classes for tools (datahandler, utilities, displaybuilder, matrixmaster, trans-
former, ...)

• a headerfile with constants

The logic behind the converter is that all procedures are performed at the high-
est level possible, to make the code as efficient as possible c.q. avoid duplicate
routines.
So all filetype-specific information that a file has in common with other filetypes, is
transferred to the level ’neuroimagefile’, for example the size of the file on x-axis,
y-axis and z-axis. This makes it possible to read the data via the generic template
class ’datahandler’.
The main course of the conversion is performed in the file ’nifticonverter.cpp’,
where ’neuroimagefile’ class functions are invoked to read, convert and write. The
subclasses should be independent of each other, so that it is easy to isolate or insert
a class of files.

Superclasslevel
All data transformations, are performed on the level of the superclass, the ’neu-

roimagefile’ class. When a subclass file is read, its data will be loaded before con-
version to the ’neuroimagefile’ class field ’fdata’. These float data are then trans-
formed using the ’matrixmaster’, ’datahandler’ and ’transformer’ classes.
The conversion of the headers also takes place on the level of the ’neuroimagefile’
class. When a file is created, its default values on neuroimageclass level are filled,
for example for VTC files that the time runs fastest. This makes it possible to con-
vert header and data on the highest level while the converter is in fact ignorant

4

Figure 2.1: NIfTI converter classes

5

about the source file class or destination file class.
The neuroimagefile has coordinate system DICOM (in field coordsys) where
the position of the image is described via the 4x4 matrix position, while the sub-
classes and subsubclasses can contain positioning and transformation information
in the fields localposition according to the local coordinate system contained
in the field localcoordsys.

Subclass level
On the subclass level, which are the ’niftifile’ and ’brainvoyagerfile’ classes, the

flags for the coordinate system and orientation are set by default.

Subsubclass level
The implementation for the read and write routines is specific to the subsubclass

of the neuroimagefile class that the file belongs to. When reading data via function
load_data(), the native data are converted to a 3D or 4D float volume.
When writing the converted file to disk, the float data are cast to the native data
type of the destination file class. For reading and writing BrainVoyager file classes,
the routines used are where possible the BVQX plugin access functions, which
rely on file currently opened in the BrainVoyager main window. If the file is not
available, the converter will try to read from disk. For NIfTI-1 files, the routines
offered in the nifti1_io.h/c files by Robert W. Cox and Rick Reynolds are used.

2.0.2 Swapping

When a NIfTI image is read, the image is swapped automatically to system byte or-
der by the nifti1_io.h/c code. For BrainVoyager files, the flag databyteorder
is set during construction of the object brainvoyagerfile to BYTEORDER_IEEE_LE.
When the BrainVoyager file is written, the flags databyteorder and sysbyteorder
are compared. In case of incongruence, swapping will be applied in the function
write(). Here the subsubheader can be swapped while the superclass metadata
stay in congruence with the system byte order. This makes it possible to easily
write without swapping back and forth in order to figure out the dimensions of
the image.

2.0.3 File naming

The name of the original file is used where possible. If the file has no name, like
in the case of a BrainVoyager contrast map created from a GLM file via the GLM
Options dialog, the plugin tries to obtain the name from the underlying VTC file
to create a name <vtcname>_statmap.nii.

6

2.0.4 Positioning

In NIfTI-1, images are positioned with respect to the NIfTI-1 coordinate system. In
BrainVoyager QX, however, different coordinate systems are used (see appendix
A. Also, images can be a subspace of an anatomical image; this means that it has
coordinates with respect to the file of which the image is a subspace. The calcu-
lation of positioning information is being performed in the class posfile. The
calculation principle is depicted in figure 2.2.

Figure 2.2: Positioning

7

2.0.5 Statistical data

Statistical data are described internally via the distributiondescriptor class,
which is a member of the neuroimagefile class. The advantage of not directly
writing conversion code separately for the statistical data files is that it is transpar-
ent what happens to the values. Also, extension and maintenance of the code is
easier.

Figure 2.3: Matching the probability distribution types in NIfTI-1 and BrainVoy-
ager QX

8

Chapter 3

Functional design: the
conversion procedure

3.1 Introduction

Because of the C++ inheritance mechanisms, it was possible to invoke the con-
version procedure in the main file nifticonverter.cpp, which enhances the
transparency of the code. Also, the procedure looks simple, because the conver-
sion can now be done in just a few lines (see figure 3.2); the naming of the functions
is dictated by the superlevel neuroimagefile class, and the implementation can be
found in subclasses.

Figure 3.1: Conversion procedure

The values in the superclass and subclass are initially set to 0 or false in the
respective constructor classes. The structural filetype specific superclass values are
set in the constructor function of the subclass, for example ’extension’ or ’datatype’.
The varying values, like for dimensions or name of the image, are copied on de-
mand later, via the copyheader() function.

3.2 Process flow

3.2.1 reading

For reading files, the converter will first check if a file of that type is opened in
BrainVoyager QX, via the method getcurrentheader(). BrainVoyager QX plu-
gin access methods are used to retrieve the header and data of BrainVoyager files.

9

If the file is not currently opened, or it is a NIfTI file, the function readheader()
will be invoked. In these cases the file will be read from disk; in the case of NIfTI-1
files, the functions in nifti1_io.h/c are used to read the file.

3.2.2 conversion

Metadata are copied from the filespecific header to the superclass header via
copyheader(SUBCLASS2SUPERCLASS); after having retrieved the positioning
and transformation information via the retrieveposition() and retrievetransformations()
functions, this also entails a transformation of the local coordinates in localposition
to fill the neuroimagefile::position field, which is the image position with
respect to the DICOM coordinate system. For BrainVoyager files, it will create a po-
sitioning matrix from the current VMR, FMR or DMR header. For NIfTI files, this
will retrieve the sto_xyz or qto_xyz fields. The positioning matrix will be saved
in the local header. Then, the data are loaded to the original file via loaddata().

Figure 3.2: neuroimagefile::convert()

The loaddata() function first tries to obtain the data via getcurrentdata(),
which uses the native BrainVoyager QX plugin access functions and the nifti1_io
function. Otherwise, in some cases, it will try to read from disk. In the func-
tion loaddata() the data are cast to float data type via the datahandler routine
cast2float() and linked to the superclass field fdata.
Transfer of the data takes place on highest level in the hierarchy, in the convert(imgfile)
function of the neuroimagefile class; metadata are then adapted if necessary,
for example when the resolution changed (when importing to BrainVoyager). The
data preserved at neuroimagefile class level are converted by the transformer and
datahandler classes. For export to NIfTI, it will be possible to choose whether the
image will be transformed or that just a positioning matrix will be attached (in
SPM5 this is sufficient for proper display). In transformer::reorient() the
flag flag_transformimage determines whether the image data will be trans-
formed or not. If the flag flag_transformimage is false, the copy(superclass2subclass)
method of the target file should take care of incorporating the reorientation matrix
saved in the field neuroimagefile::transform.
The transformer class uses the code of Philippe Thevenaz with kind permission
[3]. Then, the header and data are transferred from neuroimagefile class level to
file specific level via copyheader(SUPERCLASS2SUBCLASS).

10

3.2.3 writing

The file is written to disk via the write() function, a function which is imple-
mented on the lowest level. For writing BrainVoyager files, the converter will
check if a BrainVoyager QX plugin access method is available. In case of NIfTI
files, the nifti-1 API is used.

11

Chapter 4

Platforms and differences

Platform differences for compiling:

Linux
The differences in code are:

1. Static BVQX plugin access headers

2. conccfiles shell script for assembling *.cpp files in one *.cpp file and compila-
tion

3. modified nifti1_io.h/c files.

Because of templates, put datahandler.h lowest in concatenated.cpp and/or put all
functions of template class in *.h file after class declaration (not IN class declara-
tion). Try g++ if gcc does not work.
Compilation: once for each number of files: in shell, type $./conccfiles <name>.so
Recompilation: in shell, type $./compile_linux
Start bvqx: on linuxbi, in bin ./bvqx

Mac
Makefile for compilation Open the *.xproj file in the application XCode and

press ’Build’.

Windows
Visual Studio C++ 2005.

Compilation: ’Build’ or ’Rebuild all’.

12

Appendix A

Coordinate systems

Summary of axes systems in BrainVoyager QX:

1. Internal coordinates. Origin at voxel (0, 0, 0).
XBV: anterior→ posterior
YBV: superior→ inferior
ZBV: right→ left

2. System coordinates. Origin, directions/values are defined the same as the
internal coordinate system but axes names follow Talairach standard:
XSYS: right→ left
YSYS: anterior→ posterior
ZSYS: superior→ left

3. Talairach coordinates. Axes names like in system coordinates but opposite
directions, origin in AC (128,128,128), values defined according to 8 land-
marks (AC, PC, LP, RP, SP, IP, AP, PP).
XTAL: left→ right
YTAL: posterior→ anterior
ZSYS: superior→ left

4. OpenGL coordinates. Like internal (but also shown as system coordinates
to the user, except small axes cross in left lower corner of OpenGL (surface)
window.

13

Appendix B

Transformations

In this chapter a graphical representation of image transformations has been pro-
vided. For affine transformations, 4 types of parameters are possible, which are
rotation, translation, scaling and shearing (see figure B).

Figure B.1: The affine transformations. Note: scaling operations are sometimes
referred to as zooms.

Affine transformations can be concisely represented in a 4x4 transformation
matrix (see figure B), which computes a new position vector for each voxel. The
transformation is linear, that is, the same transformation is used for all voxels in a
volume.

14

15

16

17

18

Bibliography

[1] R.W. Cox et al. A (sort of) new image data format standard: Nifti-1. Human
Brain Mapping, 25(x):xxx, 2004.

[2] R. Goebel, F. Esposito, and E. Formisano. Analysis of fiac data with brain-
voyager qx: From single-subject to cortically aligned group glm analysis and
self-organizing group ica. Human Brain Mapping, 27(5):392–401, 2006.

[3] P. Thevenaz, T. Blu, and M. Unser. Interpolation revisited. IEEE Transactions on
Medical Imaging, 19(7):739–758, 2000.

19

	Introduction
	Description
	The NIfTI-1 data format
	Changes in the NIfTI converter for BrainVoyager QX

	Availability

	Structural design
	Classes
	Swapping
	File naming
	Positioning
	Statistical data

	Functional design: the conversion procedure
	Introduction
	Process flow
	reading
	conversion
	writing

	Platforms and differences
	Coordinate systems
	Transformations

