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We propose a simple but generally applicable approach to improving the accuracy of automatic image
segmentation algorithms relative tomanual segmentations. The approach is based on the hypothesis that a large
fraction of the errors produced by automatic segmentation are systematic, i.e., occur consistently from subject to
subject, and serves as a wrapper method around a given host segmentation method. The wrapper method
attempts to learn the intensity, spatial and contextual patterns associated with systematic segmentation errors
produced by the host method on training data for which manual segmentations are available. The method then
attempts to correct such errors in segmentations produced by the hostmethod on new images. One practical use
of the proposed wrapper method is to adapt existing segmentation tools, without explicit modification, to
imagingdata and segmentationprotocols that aredifferent fromthoseonwhich the toolswere trainedand tuned.
Anopen-source implementation of theproposedwrappermethod is provided, and can beapplied to awide range
of image segmentation problems.
The wrapper method is evaluated with four host brain MRI segmentation methods: hippocampus segmentation
using FreeSurfer (Fischl et al., 2002); hippocampus segmentation using multi-atlas label fusion (Artaechevarria
et al., 2009); brain extraction using BET (Smith, 2002); and brain tissue segmentation using FAST (Zhang et al.,
2001). The wrapper method generates 72%, 14%, 29% and 21% fewer erroneously segmented voxels than the
respective host segmentation methods. In the hippocampus segmentation experiment with multi-atlas label
fusion as the host method, the average Dice overlap between reference segmentations and segmentations
produced by the wrapper method is 0.908 for normal controls and 0.893 for patients with mild cognitive
impairment. Average Dice overlaps of 0.964, 0.905 and 0.951 are obtained for brain extraction, white matter
segmentation and gray matter segmentation, respectively.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Accurate automatic segmentation is highly desirable in a large
number of neuroimaging applications, given the often prohibitive cost of
manual segmentation. Many software tools that address specific
segmentation problems are available to today's researcher. However,
the end-users of these tools are not always able to achieve thehigh levels

of segmentation accuracy reported by the tool developers. For instance,
in (Fischl et al., 2002), the authors of FreeSurfer report average Dice
overlap of ∼80% between automatic segmentation of the hippocampus
and manual segmentations. In Morra et al. (2009) and Pardoe et al.
(2009), theusers of the same tool report only∼70%average overlapwith
the manual segmentations. There are multiple possible causes for such
discrepancies. Firstly, the manual segmentation protocols used by the
tool developers and the tool users may be different. The prevailing
approach to evaluating segmentation accuracy is to compare automatic
segmentation to manual segmentation by one or more experts.
However, different experts produce different segmentations, and
experts from different centersmay use different segmentation protocols
or even disagree on the anatomical definitions of the underlying
anatomy. This issue has been widely discussed in the literature, and
significant advances have been made in deriving a consensus from
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segmentations by experts with varying degrees of reliability (Warfield
et al., 2004). However, even these advances do not address the problem
of disagreement in protocols and definitions of anatomy. Thus, the
automatic method may be performing just fine on the end-user's data,
but the end-user's definition of the ground truth may differ from that of
the tool developer. The second possible cause of discrepancy is that
modern automatic segmentationmethods are largely knowledge-based
and incorporate expert knowledge in the form of anatomical shape
priors, appearance models, and other parameters. This knowledge is
often constructed based on some specific dataset that may be
consistently different from the end-user's imaging data.

The aim of this paper is to increase the accuracy of existing automatic
segmentation methods when applied to end-user's data and evaluated
against end-users’manual segmentations. Oneway to achieve thiswould
be for the end-user to retrain and retune the automatic segmentation
method on his or her own data, using his or her own segmentation
protocol. This approach is not universally available, and may require
scientific and technical expertise far beyond the level needed to apply the
segmentation method. We advocate a simpler alternative approach that
works with out-of-the-box automatic segmentation software.

When evaluated with respect to manual segmentation, the errors
produced by a segmentation algorithm can be categorized into two
classes: random errors and consistent errors (Warfield et al., 2008,
Aljabar et al., 2009). The random errors are caused by random effects,
e.g. image noise and random anatomical variation. They can be reduced
by label fusion techniques that combine information from multiple
segmentation attempts performed independently, e.g. (Rohlfing et al.,
2005, Warfield et al., 2004, Heckemann et al., 2006, Aljabar et al., 2009,
Sabuncu et al., 2010). In this paper, we focus on addressing the other
typeof errors, consistent errors. Consistent errors are errors that followa
systematic pattern and are caused by mistranslating manual segmen-
tation protocols into the criteria followed by the automatic segmenta-
tion method. For example, in hippocampal segmentation, an automatic
segmentationmethodmaymistakenly classify pockets of cerebrospinal
fluid (CSF) inside the hippocampus as parts of the hippocampus,
perhapsdue to regularizationpriors andpartial volumeeffects.Ahuman
ratermay bemore likely to classify these pockets as not belonging to the
hippocampus. Such a difference between automatic and manual
segmentations is systematic because it occurs consistently under a
given set of conditions (i.e. low intensity values in a portion of the
hippocampus where CSF pockets tend to form). In this paper, we
hypothesize that it is feasible for machine learning techniques to learn
the conditions under which consistent errors in automatic segmenta-
tion occur and to subsequently detect and correct these consistent
errors for other images. For example in the hippocampal CSF example
given above, a classifier could be built to recognize spatial locations and
intensity patternsunderwhichmislabelingof CSF ashippocampal tissue
is likely to occur; applying such a classifier to the results of automatic
segmentationonanew imagecouldproperly relabel somevoxels asCSF.

In what follows, we use four different neuroimaging segmentation
experiments to demonstrate that the consistent errors between
automatic segmentation results and manual segmentations tend to be
associatedwith a consistentpatternof intensity andcontextual features,
which can be modeled and learned by a machine learning algorithm.
Themain contribution of our paper is awrapper algorithm that (1) learns
these patterns using example manual segmentations and imaging data
provided by the end user; and (2) applies a correction to the automatic
segmentation results produced by the out-of-the-box method on the
end-user's data. The wrapper method is capable of correcting even very
large consistent errors. For example, in an experiment that analyzes
FreeSurfer hippocampus segmentation, average Dice overlap between
automatic and our reference segmentations is improved from 66% to
84% using only five reference segmentations for training.

The wrapper method can also be incorporated into the segmen-
tation tool itself, in some cases requiring no additional training data.
This scenario is illustrated below in the context of multi-atlas

hippocampus segmentation, where the wrapper method provides a
small but significant boost to segmentation accuracy, generating
highly competitive results for manual/automatic segmentation agree-
ment reported in the literature. Our wrapper method can be easily
implemented, and a reference implementation is provided as open-
source software.1

This paper is organized as follows. The Materials and methods
section summarizes the imaging datasets used to evaluate the
proposed approach; details the proposed learning-based wrapper
method for segmentation error correction, as well as two variants
used to demonstrate the effectiveness of the specific components of
the method; and describes the four host automatic segmentation
methods to which the wrapper method is applied. The Results section
evaluates the performance of the wrapper method relative to manual
segmentation, compares the variants of the wrapper method, and
evaluates the sensitivity of the wrapper method to parameters such as
training set size. The strengths, weaknesses and potential use cases of
the method are discussed in the Discussion section.

Materials and methods

Subjects and imaging

Our study was conducted on three different segmentation
problems: segmentation of the hippocampus, brain extraction and
brain tissue segmentation. Hippocampus segmentation experiments
use the data from the Alzheimer's Disease Neuroimaging Initiative
(ADNI) available at http://www.loni.ucla.edu/ADNI. Brain extraction
and brain tissue segmentation experiments use the data from the
Internet Brain Segmentation Repository (IBSR) provided by the Center
for Morphometric Analysis at Massachusetts General Hospital and
available at http://www.cma.mgh.harvard.edu/ibsr.

ADNI Data
The ADNI was launched in 2003 by the National Institute on Aging

(NIA), the National Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), private pharmaceu-
tical companies and non-profit organizations, as a $60 million, 5-year
public-private partnership. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuro-
psychological assessment can be combined to measure the progression
ofmild cognitive impairment (MCI) and early Alzheimer's disease (AD).
Determination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen the time
and cost of clinical trials.

ADNIMRI data includes structural 1.5TMRI fromall 800 subjects and
3T structural MRI from 200 subjects. Our experiments were conducted
using a subset of the 3T images forwhich reference segmentationswere
already available from an earlier study of hippocampal atrophy rate
estimation inMCIpatients (Yushkevich et al., 2010). This subset consists
of baseline 3T MRI scans of 82 MCI patients and 57 controls.

The reference segmentationswere generated for theADNI subjects as
follows. First, we applied a landmark-guided atlas-based automatic
segmentation method (Pluta et al., 2009) to obtain an initial hippocam-
pal segmentation for each image. This method requires six manually-
placed landmarks as input. Each initial segmentation was then edited in
three dimensions by M.A. in ITK-SNAP software (Yushkevich et al.,
2006a) following a previously validated protocol (Hasboun et al., 1996).
The reliability of this segmentation protocol is summarized in the
Appendix.

1 Source code and documentation at http://www.nitrc.org/projects/segadapter.
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IBSR data
The dataset contains 18 T1-weighted MR brain images and their

manual segmentations. The images provided by IBSR have been
normalized into the Talairach space (rotation only) and preprocessed
by intensity inhomogeneity correction routines. The images have slice
thickness of 1.5 mm with in-plane resolution varying between
1.0 mm×1.0 mm and 0.84 mm×0.84 mm. The manual segmenta-
tions contain labels for gray matter, white matter and the ventricles.
Notably, cerebrospinal fluid (CSF) outside of the ventricles is assigned
the gray matter label in the IBSR segmentations.

Learning-based wrapper methods

To improve the segmentation results produced by a given host
automatic segmentation method, we propose two learning-based
wrapper algorithms: a wrapper algorithmwith explicit error correction
(EC) and awrapper algorithmwith implicit error correction. Explicit EC
explicitly searches for voxelsmislabeled by the hostmethod and assigns
a new label to them. By contrast, implicit EC assigns new labels to voxels
without first determining if they are mislabeled or not. These two
methods are equivalent for binary segmentation problems, but for
multi-label segmentation, the explicit ECmethod is more computation-
ally efficient, as explained later in this section.

The data used to train ourwrappermethod consist of a set of images,
a set of correspondingmanual segmentations of the structure of interest,
and a set of corresponding automatic segmentation results produced by
the host method. For evaluation, the wrapper method is applied to test
data, consisting of a set of images and corresponding segmentations by
the host method. To quantify the performance of our error correction
algorithms, corrected and uncorrected automatic segmentations were
assessed by comparison with manual segmentations. Since manual
segmentations are available for all the subjects in our datasets, for each
experiment we randomly partition each dataset into training and test
subsets. As a means of cross-validation, experiments are repeated for
multiple random partitions.

Next, we describe the error correction wrapper algorithms in detail.

Explicit error correction
Fig. 1 summarizes the explicit EC wrapper method. Using this

method, a target image is segmented as follows. First, the host
segmentation method is used to obtain the initial segmentation of the
target image. Second, a classifier attempts to identify voxels that have
been mislabeled by the host method. We refer to this as the error
detection classifier. Next, a second classifier is used to reassign labels
to the voxels tagged as mislabeled by the error detection step. This
classifier is referred to as error correction. To construct the error
detection and error correction classifiers, we use training data for
which manual segmentations are available and initial segmentations
are obtained by running the host method. We now describe the
training and application of the error detection and error correction
classifiers in detail.

Error detection as a binary classification problem. Given segmentation
results produced by a host segmentation method, our first step is to
identify which voxels are mislabeled with respect to the manual
segmentations.We formulate this problem as a classification problem,
which is addressed via machine learning as follows.

Weassume that the segmentationproblem involves assigningoneor
more foreground labels to the structures of interest and a background
label to the rest of the image. For each foreground label L, we train one
classifier to separate correctly labeled voxels from the mislabeled
voxels. All voxels across all training images that are assigned the label L
by the host segmentation method serve as examples for training the
classifier for label L (see Table 2). The features used for training these
classifiers are derived from the neighborhood of each voxel, and are
discussed later in this section.

The approach is slightly different for the background label, since in
many segmentation problems the background region is much larger
than the foreground. As before, a classifier is trained to identify voxels
incorrectly assigned the background label by the host method.
However, when the host method works reasonably well, most voxels
incorrectly labeled as background should be in the close proximity of
the voxels labeled as foreground. Hence, instead of using all voxels
labeled as background by the host method as training examples, we
only use the subset of these voxels that lie in a region of interest (ROI)
obtained by dilating the set of voxels assigned the foreground label by
the host segmentation. In the rest of the paper, we refer to this region
of interest as the working ROI. The restriction of training to the
working ROI excludes the vast majority of irrelevant background
voxels from consideration and simplifies the learning problem
considerably. In our experiments, we choose the dilation radius
such that, in the training set, the working ROIs cover the vast majority
of the voxels assigned the foreground label by the manual segmen-
tation (see the Results section for some examples). In certain
segmentation problems, the foreground region is provided as input,
and there is no need to train the background error detection classifier.
For example, in our experiments with brain tissue segmentation,
manual brain extraction masks from IBSR define the foreground
region, and segmentation does not involve the background label.

Note that formulti-label segmentation problems, the error detection
classifiers for different labels perform different classification tasks, i.e.,
detecting voxels where the given label L has been assigned erroneously
by the host method. Learning these tasks separately decomposes the
complex multi-class classification problem into several simpler binary
classification problems. However, for segmentation problemswith only
two labels, the error detection classifiers for the foreground and
background labels perform equivalent tasks. Hence, to increase the
robustness against overfitting for binary segmentation problems, we
train a single error detection classifier for both foreground and
background using all voxels within the working ROI.

Error detection classifiers are constructed using the AdaBoost
algorithm (Freund and Schapire, 1995), which has shown excellent
ability to learn complex patterns in the context of medical image
segmentation, as exemplified by the work of Tu et al. (2007) andMorra
et al. (2008). AdaBoost builds strong classifiers by combining comple-
mentary weak classifiers. Intuitively, AdaBoost iteratively updates the
weights associated with each training sample based on the selected
weak classifiers, such that the samples that are incorrectly classified
receive higherweights. By doing so,weak classifiers selected later in the
course of the training complement the previously selected weak
classifiers, in the sense that they only focus on classifying samples that
have been previously classified incorrectly. Combining these comple-
mentary weak classifiers produces a strong classifier that performs
better than any single weak classifier.

Following common practice (Viola et al., 2001; Tu et al., 2007), we
build weak classifiers based on features that are extracted from local
image appearance. Let AΔx,Δy,Δz (i)= I (xi+Δx, yi+Δy, zi+Δz)− Ī be
the appearance feature at the relative location (Δx, Δy, Δz) for the

Fig. 1. Flow chart of the explicit EC method. The error detection step finds the voxels
that are likely to be mislabeled by the host method. The error correction step re-assigns
a new label to them. Both error detection and error correction are automatically learned
using training segmentations produced by the host method.
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voxel i with coordinates (xi , yi , zi ). I is the image intensity. To
compensate for different intensity ranges across different images, the
intensity features are normalized by the mean intensity Ī of the
working ROI. Note that our set of appearance features for each voxel
includes the complete local image patch, rather than higher-order
quantities derived from partial derivatives of image intensity. By
including all intensity information in the neighborhood of a voxel, we
rely on AdaBoost to find a combination of these intensities that is most
useful in the context of classification. More robust features with scale
and rotation invariance could be included as well. However, since the
brain images used in our experiments have similar scales and
orientations, simple appearance features are sufficient to demonstrate
the usefulness of our method.

Image appearance features are capable of capturing certain image
intensity patterns associated with consistent segmentation errors
(e.g., if the host methodmakes consistent errors in CSF regions, which
have relatively darker intensity). However, segmentation errors can
also correlate with patterns not captured by the local intensity patch.
For example, the host method may consistently overextend its
segmentation past a certain anatomical boundary for which there is
little intensity contrast. To allow the classifier to learn such patterns of
mis-segmentation, we include as features the segmentation labels
produced by the host method in the neighborhood of each voxel. We
represent these features by LΔx,Δy,Δz (i)=s(xi+Δx, yi+Δy, zi+Δz),
where s is the segmentation produced by the host method.We refer to
these features as contextual features because they supplement
intensity features with important contextual information. For in-
stance, they allow the classifier to treat the same intensity patch
differently depending on whether it occurs on the boundary of the
host segmentation or on the interior. As our experiments below
demonstrate, the contextual features are crucially important for the
performance of the wrapper method.

To include spatial information,we add the coordinate feature Sx (i)=
xi− x̄, Sy (i)=yi− ȳ and Sz (i)=zi− z̄, where x̄, ȳ, z̄ are the coordinates
of the center of mass of the working ROI. To enhance the spatial
correlation, we include the joint feature obtained by multiplying each
spatial feature with each appearance and contextual feature. For
example, the joint features of appearance and location include AΔx,Δy,Δz

(i)Sx (i), AΔx,Δy,Δz (i)Sy (i), and AΔx,Δy,Δz (i)Sz (i). In our experiment, all
features are sampled in a 5×5×5neighborhoodof a given voxel (i.e.,Δx,
Δy, Δx ∈ [−2, 2]), which yields a total of 1003 features.

Given the response of a feature at each training voxel, e.g. A(0,0,0) (i),
we follow Viola et al. (2001) and construct a weak classifier via a linear
transform, i.e. h(A(0,0,0) (i))=sign(aA(0,0,0) (i)−b), where a ∈ {−1, 1}
and b is a threshold. Both parameters are optimized through a linear
search such that the weighted misclassification rate is minimized. After
the weak classifiers are built, we apply AdaBoost to select and combine
them into a single strong classifier. In our experiments, we train every
AdaBoost classifier for 500 iterations.

Applying error detection classifiers to test images involves
computing the initial segmentation of the test image using the host
method, deriving aworking ROI for the test image by applying dilation
to the initial segmentation, and, for each label L, applying the
AdaBoost classifier corresponding to L at each voxel assigned the
label L in the initial segmentation. This results in a subset of voxels in
the working ROI being marked as mislabeled. These voxels are used as
the input for the error-correction classifier.

Error correction classifiers. We seek to assign a new, hopefully correct
label to the voxels marked mislabeled by the error detection classifiers.
For segmentations with only two labels, this step is unnecessary, since
correction simply involves flipping the label of the voxels marked as
mislabeled by the error correction.

For segmentationproblemswithmore than two labels,we formulate
error correction as a multi-class classification problem. Using all voxels
incorrectly segmented by the host segmentation method as training

exemplars,we train a separate classifier for each label L. Each classifier is
trained to separate voxels assigned label L by the manual segmentation
from voxels assigned all other labels by the manual segmentation (see
Table 2). Again, we use AdaBoost learning with the same set of features
described above. As in the case of error detection, we use the mean
intensity and the center of mass of the working ROI to normalize the
appearance and the spatial features used for error correction.

To assign a new label to a voxel marked mislabeled by error
detection, we apply each error correction classifier to that voxel and
assign the label whose corresponding classifier gives the strongest
response.

Implicit error correction
In explicit EC, we explicitly perform error detection and error

correction as separate steps. This strategy is efficient because only the
potentiallymislabeled voxels need to be relabeled for error correction.
We also examine an alternative learning-based approach, which we
call implicit error correction. In this approach, we skip the error
detection step and directly perform error correction upon the initial
segmentation. This method is equivalent to explicit EC where every
voxel in the working ROI is marked as mislabeled.

Since this learning algorithm aims at directly transferring the
segmentation produced by a host method to the corresponding
manual segmentation, it implicitly corrects the errors produced by the
host method. Fig. 2 summarizes our implicit EC method.

To train implicit EC classifiers, we use a working ROI obtained by
dilating the set of voxels labeled as foreground by the host method.
Again, dilation is necessary only when the background label needs to
be corrected. Using all voxels within the working ROI, we train one
classifier for each label to recognize voxels actually assigned to this
label by manual segmentation (see Table 2). It is easy to see that
explicit EC is equivalent to implicit EC on segmentation problemswith
only two labels.

Since implicit EC reevaluates every voxel in the working ROI, it is
not affected by the errors produced by the error detection classifiers in
explicit EC. This becomes an advantage when error detection
classifiers are unreliable. On the other hand, implicit EC has higher
computational complexity than explicit EC for both training and
testing because implicit EC trains multiple classifiers using all voxels
in theworking ROI as training examples, while explicit EC trains only a
single error detection classifier using the whole working ROI, while
using only the voxels marked mislabeled to train the per label error
correction classifiers. The computational complexity of the two
methods is compared in Table 1.

Direct learning
To demonstrate the usefulness of including contextual features

(i.e., features derived from the segmentation produced by the host
method) in EC classifier learning, we compare our error correction
wrapper methods with a variant of implicit EC, where the contextual
features are not included as a feature. We call this variant the direct
learning (DL) approach. Using the same training data used for implicit
EC, we apply AdaBoost to train one DL classifier for each label to

Fig. 2. Flow chart of the implicit error correction method.
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recognize voxels manually assigned to this label. The only difference
from implicit EC is that we only use appearance and spatial features
for learning DL classifiers, while the features LΔx,Δy,Δz are not included.

In principle, in the absence of a segmentation result by a host
method, DL should use all voxels in the whole image for training.
However, to highlight the contribution of contextual features for
learning, we train DL classifiers over the same working ROI as in
explicit/implicit EC. Hence, in our experiments, DL partially benefits
from the results produced by the host segmentation methods.

The general features and the computational cost of the explicit EC,
implicit EC and DL methods are compared in Table 1. The differences
in the way the classifiers used by these three methods are specified in
Table 2.

Host segmentation methods

The variants of the wrapper method are evaluated in three common
MRI segmentation problems using four host methods. For the problem
of hippocampus segmentation in ADNI MRI, the host methods are
FreeSurfer (Fischl et al., 2002) and a multi-atlas label fusion segmen-
tation approach (Artaechevarria et al., 2009, Sabuncu et al., 2010). For
brain extraction in IBSR data, the host method is the Brain Extraction
Tool (BET) (Smith, 2002). For the problemof three-tissue segmentation,
the FSL FAST algorithm (Zhang et al., 2001) serves as the host method.

Hippocampus segmentation and brain extraction are binary
segmentation problems (hippocampus segmentation involves seg-
menting left and right hippocampi, but these segmentations are
performed as independent binary problems). Thus, for these problems
the explicit and implicit variants of the EC method are equivalent. The
three tissue segmentation problem involves multiple labels and
allows these variants to be compared.

FreeSurfer
FreeSurfer is a software pipeline for the study of cortical and

subcortical anatomy. It contains preprocessing components that extract
the brain and compensate for intensity inhomogeneity; segmentation

tools; and other utilities for cortical and subcortical morphometry.
Subcortical segmentation is achieved by aligning the target image with
an atlas constructed from a set of manually labeled training images.
Although FreeSurfer is not a specialized tool for hippocampus
segmentation, due to its popularity and its good general segmentation
performance, hippocampal segmentation results by FreeSurfer have
been used as a benchmark for evaluating the performance of automatic
hippocampal segmentation methods in the recent literature (Morra
et al., 2009, Akhondi-Asl et al., 2011, Sanchez-Benavides et al., 2010). As
in these papers, we apply FreeSurfer to imaging data with different
acquisition parameters from those onwhich FreeSurferwas trained, and
evaluate it against reference segmentations generated using a different
hippocampus segmentation protocol. The intention of the FreeSurfer
experiment is to demonstrate that the wrapper method can help
reconcile these differences in imaging and segmentation protocols,
making FreeSurfer perform very well on our data.

In this test, FreeSurfer was applied with the default parameters to
segment the left and right hippocampus in each image in the ADNI
dataset. 10 cross-validation experiments were performed, with 70
subjects selected at random to form the training set and the remaining
69 subjects forming the test set. Additional experiments with training
sets of size 1 to 5, 10 and 20 were also performed to assess the
relationship between the size of the training set and the improvement
achieved by the wrapper method.

Multi-atlas label fusion
Multi-atlas based segmentation labels a target image by computing

one-to-one correspondences with a set of labeled atlases, i.e., images
with similar appearance in which the segmentation of the structure of
interest is given (Rohlfing et al., 2005). Correspondences are computed
using deformable image registration, and segmentation labels are
mapped from the coordinate spaces of the different atlases into the
coordinate space of the target image. These warped segmentations are
combined into a single consensus segmentation using a label fusion
strategy. Various fusion strategies have been proposed, majority voting
being the simplest. Recent work has demonstrated the effectiveness of
strategies where the contribution of each atlas to the consensus
segmentation is weighted by the local intensity similarity of the atlas
to the target image (Artaechevarria et al., 2009). Because of its simplicity
and good performance, multi-atlas segmentation has become a popular
approach for medical image segmentation.

Compared with the FreeSurfer experiment, the experiment using
multi-atlas label fusion as the host method is designed to demonstrate
the contribution of the wrapper method in the absence of systematic
differences due to imaging and segmentation protocols. Thus, the test
images and the atlas images in this experiment all come from the
ADNI dataset. The multi-atlas experiment is also an example of a
scenario where using the wrapper method to improve segmentation
performance does not require additional training data beyond that
already used by the host algorithm, because the training of the EC
classifiers is performed among the atlases in a leave-one-out fashion.

As before, 10 cross-validation experiments were performed. In
each experiment, 20 subjects were randomly chosen as atlases and 20
more were chosen as test images. Each atlas was registered to each
test image, as well as to each other atlas. Global registration was
performed using the FSL FLIRT tool (Smith et al., 2004) with six
degrees of freedom and using the default parameters (normalized
mutual information similarity metric; search range from−5 to 5 in x,
y and z). Deformable registration was performed using the ANTS
Symmetric Normalization (SyN) algorithm (Avants et al., 2008), with
the cross-correlation similarity metric (with radius 2) and a Gaussian
regularizer with σ=3. After registration, reference segmentations
from each of the atlases were warped into the target image space.

To compute the consensus segmentation of each target image, we
use the label fusion strategy determined to be most effective in the
recent studies by Artaechevarria et al. (2009) and Sabuncu et al.

Table 1
Summary of explicit EC, implicit EC and DL. nL is the number of labels. N is the size of the
working ROI, in voxels. r is the fraction of voxels mislabeled by the host method. NA and
NL are the number of appearance features and label features, respectively. Explicit EC
usually has a smaller computational cost than implicit EC and DL for multi-label
segmentation problems. Implicit EC and explicit EC are equivalent for two-label
problems.

Explicit EC Implicit EC DL

Explicit search for mislabeled
voxels

yes no no

Contextual features used yes yes no
Computational cost (1+rnL )N (NA+NL) nL N (NA+NL) nL N NA

Table 2
A comparison of how the explicit and implicit error correction methods train and apply
classifiers. Above, nL denotes the number of labels in a segmentation problem; i indexes
voxels in an image; s(i) is the initial segmentation produced by the host method at
voxel i; and m(i) is the manual segmentation of voxel i.

Explicit EC Implicit EC
and DL

Error
detection

Error correction

Number of classifiers nL nL nL
Training exemplars of class
1 for classifier L

{i : s(i)=L, m
(i)=L}

{i : s(i)≠m(i),
m(i)=L}

{i : m(i)=L}

Training exemplars for class
0 for classifier L

{i : s(i)=L,
m(i)≠L}

{i : s(i)≠m(i),
m(i)≠L}

{i : m(i)≠L}

Voxels in test image to which
classifier L is applied

{i : s(i)=L} Voxels assigned class
0 by error detection

All voxels in
working ROI
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(2010)). Let TF be a test image and A1=(AF
1, AS

1 ),…, An=(AF
n, AS

n) be n
atlases registered to TF , with AF

i denoting the warped atlas image, and
AS
i denoting the corresponding warped reference segmentation. The

locally weighted label fusion strategy produces the final segmentation
T̂S (x) as follows:

T̂ s xð Þ = argmaxL∈ 1…nLf g ∑
n

i=1
wi xð Þδ Ai

S xð Þ; L
� �

ð1Þ

where L indexes through the labels, nL is the number of labels (in our
case, 2), and δ is the Kronecker delta function. The spatially varying
weight wi (x) measures the confidence that atlas i produces the
correct label for the test image at x, which is estimated from the
appearance similarity between the test image and the registered atlas
image in the neighborhood of x. We apply the summed square
distance (SSD) and a Gaussian model (Sabuncu et al., 2010) to
estimate the weights as follows:

wi xð Þ =
exp −∑j∈N xð Þ TF jð Þ−Ai

F jð Þ
h i2

= σ
� �

∑n
k = 1w

k xð Þ ð2Þ

where N denotes a neighborhood centered at x. We use a (2r+1)×
(2r+1)×(2r+1) cube-shaped neighborhood specified by the radius
r, which is a parameter of the method. To account for absolute
intensity differences between the atlases and the target image,
instead of using the raw image intensities to estimate the similarity-
based weights, we normalize the intensity vector obtained from each
local image intensity patch, such that the normalized vector has zero
mean and unit variance. To reduce the effects of noise, we spatially
smooth the weights for each atlas by a mean filter of the same size as
the neighborhood N . After smoothing, the weights are renormalized
such that for any x, ∑i=1

n wi (x)=1.
For each cross-validation experiment, this approach generates a

consensus segmentation of each test image, as well as a consensus
segmentation of each atlas image by all the remaining atlases. The
label fusion approach has two free parameters, the neighborhood
radius r and the standard deviation σ in the Gaussian model (2). For
each cross-validation experiment, we determine the optimal values of
these parameters using the atlas subset in a leave-one-out strategy.
That is, we measure the average overlap between the consensus
segmentation of each atlas via the remaining atlases and the reference
segmentation of that atlas, and find the value of r or σ that maximize
this average overlap. Each parameter is optimized separately by
evaluating a range of values (r ∈ {1, 2, 3}; σ ∈ {0.05, 0.1, 0.15,…, 1}).
Importantly, the reference segmentations of the test images in each
cross-validation experiment are not used for finding the optimal
parameters r and σ for that experiment, eliminating the possibility of
overfitting.

The input to the EC training consists of the atlas images, their
consensus segmentations by the remaining atlases (playing the role of
the host method segmentation result), and their reference segmenta-
tions. To boost the size of the training set, the flippedmirror images of
the right hippocampi are combined with the left hippocampi to train
the EC classifiers. EC is then applied to the test images and their
consensus segmentations. For right hippocampus segmentation, the
test images are also mirror flipped before applying the EC classifiers.

Brain Extraction Tool (BET)
BET (Smith, 2002) uses a deformable model to separate the brain

from other tissues in MR images. In our experiments, BET was applied
with the default parameters to segment each of the 18 brain images
from IBSR. The EC method was used to improve the accuracy of brain
extraction relative to the brain masks in IBSR. 10 cross-validation
experiments were performed. For each cross-validation evaluation, 9
subjects were randomly selected for training the EC method, and the

remaining 9 for testing. The brain volumes have millions of voxels,
posing a challenge for the AdaBoost learning, which requires loading
all data in memory for efficient learning. For efficiency, we randomly
selected 1% voxels uniformly from the working ROIs for training.

FMRIB's Automated Segmentation Tool (FAST)
The FAST algorithm (Zhang et al., 2001) is used to segment brain

MRI into gray matter, white matter, and CSF. It takes an expectation-
maximization strategy to iteratively search for the optimal segmen-
tation and the optimal inhomogeneity bias field correction solution.
The solutions are spatially regularized by a Markov Random Field
prior to reduce the effects of image noise. In our experiment, the FAST
algorithm was applied with the default parameter settings for all 18
subjects. The region of interest for the three tissue segmentation was
restricted to the brain by providing the manually computed brain
masks in the IBSR dataset as input to FAST. The explicit and implicit
versions of the EC method were evaluated in 10 cross-validation
experiments with the same partitioning of subjects into training and
test sets as in the BET experiment.

Results

FreeSurfer

FreeSurfer hippocampus segmentations tended to be substantially
larger than the corresponding reference segmentations, and it was
sufficient to use a single-voxel dilation to obtain theworking ROI for the
learning algorithms. On average, this ROI covered 99.7% of the
foreground voxels in the reference hippocampus segmentations in
the training data. Using this working ROI definition, our Matlab
implementation of the EC method2 completed AdaBoost training in 6
hours on a 3 GHZ CPU for each cross-validation experiment. Applying
the trained EC classifiers to correct the segmentation for a test image
only took a few seconds of CPU time.

The average size of the working ROI was 5978 voxels, and the
average number of voxels in the reference segmentations was 1598.
On average, FreeSurfer produced 1489 mislabeled voxels for each
hippocampus. The EC method produced 72.0% fewer errors (418
mislabeled voxels) than FreeSurfer. By contrast, the DL method
produced slightly worse results with 472 mislabeled voxels. Table 3
shows the results in terms of Dice overlap with reference segmenta-
tions for each of the 10 cross-validation experiments. On average, the
EC method increased Dice overlap from 0.660 to 0.865.

Visualization of spatially consistent segmentation errors

Fig. 3 shows examples of the differences between FreeSurfer
hippocampus segmentations and reference segmentations (middle
column), and the differences after applying the EC wrapper method
(right column). These differences appear to follow a consistent spatial
pattern, with the FreeSurfer segmentation extending farther in the
superior direction than the reference segmentation. Furthermore,
FreeSurfer segmentations include white matter structures such as the
alveus, as well as some CSF voxels, while the reference segmentations
exclude them. Thus, the differences between reference segmentations
and FreeSurfer segmentations are associated with specific spatial
locations and specific intensity patterns; both of these can be learned
easily by a machine learning algorithm, which explains why the
EC method was able to achieve a large improvement in segmentation
accuracy.

To visualize and quantify the pattern of disagreement between
FreeSurfer and reference segmentations across all subjects, we
normalize the different hippocampus segmentations into a common

2 Recall that for binary segmentation problems the explicit and implicit EC methods
are equivalent.
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coordinate space. Normalization is performed using a structure-specific
shape-based normalization approach (Yushkevich et al., 2007). A
geometrical model, known as the continuous medial representation
(cm-rep), is fitted to each reference segmentation of the hippocampus,
and the parameterization of this geometricalmodel is used to establish a
one-to-one correspondence between the space inside and near
the reference segmentation and a common reference space provided
by a single template manual segmentation. Additional details on
how correspondence image FreeSurfer FreeSurfer+EC maps are
established using the cm-rep parameterization are given in the
Appendix. Using these correspondence maps, we transfer both the
reference segmentations and the FreeSurfer segmentations fromsubject
space into the template space. We emphasize that since the same
mapping is applied to both reference and automatic segmentations, the
differences between these segmentations are maintained by the

mapping. Averaging over all subjects, we compute the spatial label
distribution in the template space for the reference segmentations and
the FreeSurfer segmentations. These distributions are shown in Fig. 4.
Note that a cm-rep model fitted to a reference segmentation does not
overlap it perfectly. Hence, the mean spatial label distribution of the
reference segmentations in the template space is not a binary image.

The plot of mean signed difference between the normalized
automatic and reference segmentations in Fig. 4c reveals a consistent
pattern of disagreement in the anterior, posterior and superior regions
of the hippocampus for the host method. Fig. 4d and e show that after
applying the learning-based correction algorithms, this pattern of
disagreement is reduced dramatically, with the EC method producing
the greater reduction in disagreement than the DL method. Interest-
ingly, neither EC nor DL completely eliminated consistent disagreement
with reference segmentations, with both methods exhibiting a similar

Table 3
Results of automatic hippocampus segmentation using FreeSurfer and the wrapper method. Each row gives the average Dice overlap between automatic and reference
segmentations for one cross-validation experiment. The bold font highlights the best results.

Exp. Left Right

Initial (Dice) DL (Dice) EC (Dice) Initial (Dice) DL (Dice) EC (Dice)

1 0.665±0.045 0.838±0.037 0.864±0.033 0.658±0.041 0.845±0.030 0.866±0.025
2 0.666±0.045 0.839±0.035 0.863±0.028 0.651±0.045 0.843±0.031 0.865±0.025
3 0.662±0.042 0.837±0.036 0.861±0.034 0.655±0.040 0.846±0.028 0.866±0.030
4 0.663±0.046 0.833±0.037 0.861±0.034 0.661±0.037 0.842±0.026 0.870±0.021
5 0.666±0.045 0.839±0.033 0.865±0.034 0.655±0.043 0.843±0.031 0.866±0.031
6 0.668±0.045 0.838±0.031 0.864±0.030 0.655±0.041 0.843±0.026 0.867±0.024
7 0.664±0.047 0.843±0.030 0.865±0.030 0.648±0.043 0.842±0.031 0.866±0.030
8 0.668±0.044 0.838±0.036 0.863±0.033 0.659±0.040 0.842±0.031 0.865±0.031
9 0.665±0.045 0.842±0.034 0.867±0.032 0.652±0.039 0.845±0.032 0.867±0.032
10 0.665±0.045 0.840±0.035 0.865±0.033 0.656±0.042 0.842±0.031 0.863±0.033

Fig. 3. Examples of differences between the reference segmentations of the hippocampus and the automatic segmentations produced by FreeSurfer before and after applying the EC
wrapper method. Red: reference segmentation; blue: automatic segmentation; purple: overlap region between automatic and reference segmentation. The EC method successfully
corrects the spatial inconsistencies between the FreeSurfer results and the reference segmentations.
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pattern of disagreement (slight under-segmentation at the anterior and
posterior boundaries, and slight over-segmentation along the inferior
and superior boundaries). Note that the learning algorithm and the host
segmentation method produced different consistent errors. For exam-
ple, the DL algorithm produces some consistent under segmentation
around the anterior and posterior regions of the hippocampus, shown in
yellow and red colors, however such consistent errors do not appear in
the results produced by FreeSurfer and are significantly reduced in the
results produced by error correction. This result suggests that including
the host segmentation method's output in learning helps reduce
the consistent errors only imposed by the pure learning algorithm.

Hence, our error correction method outperformed the direct learning
algorithm.

A consistent pattern of difference between the automatic and
reference segmentations can also be seen by examining the volumes
of the segmentations. Table 4 shows the average hippocampal volume
produced by FreeSurfer, which is almost double the average volume of
the reference segmentations. Fig. 5 (left) plots the volume correlation
between the reference segmentations and the FreeSurfer segmenta-
tions, revealing a substantial bias between the volumemeasurements,
as well as the large variance in the difference between the
measurements. Fig. 5 (right) plots the volume correlation after

Fig. 4. The spatial patterns of disagreement between the automatic segmentations of the hippocampus in the FreeSurfer experiment and the corresponding reference segmentations,
plotted after normalization to a common reference space. All plots show a sagittal cross-section of the 3D reference space. (a). The mean of the normalized reference segmentations.
(b). The mean of the FreeSurfer segmentations, mapped into the reference space using the same transformations as the corresponding reference segmentations. (c). Mean signed
difference between FreeSurfer and reference segmentations. FreeSurfer over-segmented the hippocampus at the superior, anterior and posterior boundaries. (d). Mean signed
difference between DL results and reference segmentations. (e). Mean signed difference between EC results and reference segmentations. Both DL and EC methods correct the over-
segmentation produced by FreeSurfer, the latter doing so more effectively. (f–j). Standard deviation of the normalized reference segmentations, normalized automatic
segmentations, and their signed differences.

Table 4
The average hippocampal volumes (mm3) derived from the reference segmentations, the FreeSurfer segmentations, and the segmentations produced by the DL and EC wrapper
methods.

Left Right

Manual FreeSurfer DL EC Manual FreeSurfer DL EC

1952±377 3349±599 1919±388 1904±384 1894±391 3412±598 1858±382 1843±385
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Fig. 5. Bland–Altman plots comparing automatic volume (in mm3) estimates produced by FreeSurfer to manual volume estimates. Each point corresponds to a hippocampal
segmentation of one of the two hemispheres in one subject. The difference between automatic and manual estimates is plotted against their average. The solid horizontal line
corresponds to the average difference, and the dashed lines are plotted at average ±1.96 standard deviations of the difference.
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applying the EC method. Both the bias and the variance of the volume
difference are dramatically reduced. After error correction, the
volume differences between reference segmentation and automatic
segmentation appear to be more similar to zero-mean random noises,
as shown in Fig. 5.

The volume expansion bias observed in our experiment also has
been reported in the literature, as summarized in Table 5. This may be
due to the fact that FreeSurfer was trained on a manual hippocampal
segmentation protocol different from ours and from those used by the
other authors reporting the volume expansion bias. Besides the
contribution from employing different manual segmentation proto-
cols, Table 5 also reveals another potential bias associated with
imaging modalities. FreeSurfer tends to produce smaller volume
expansion and higher segmentation overlap with manual segmenta-
tions on 1.5 T MR images than on 3 T MR images.

As discussed in the Introduction, all these factors are natural
sources of consistent errors that a segmentation tool may produce
when applied to a large variety of applications. One way to correct
these errors would be to retrain and retune FreeSurfer on our data set.
Our error correction method gives a simple alternative approach to
adapt FreeSurfer to our data.

Effect of working ROI size

To investigate the influence of the working ROI size on the learning
algorithms, we repeat the above experiment with working ROIs of
different size. Two additional working ROIs were obtained from the
FreeSurfer segmentations by applying dilations of two and three
voxels. Since the working ROIs obtained from one-voxel dilation
already cover most of the manually labeled hippocampi, these two 1-
voxel dilation 2-voxel dilation 3-voxel dilation larger working ROI
definitions include more background voxels into consideration.
Table 6 shows the percentage of background voxels and hippocampal
voxels covered by the three working ROI definitions.

Fig. 6 shows the average Dice overlaps over 10 cross-validation
experiments using these three different working ROIs. For the EC
algorithm, using larger working ROIs results in almost identical but
slightly worse results. By contrast, DL performance is more signifi-

cantly reduced when larger working ROIs are used. This result implies
that the location of the initial segmentation produced by the host
method is informative for the segmentation problem. Ignoring this
information by including more irrelevant number of training images
background voxels indeed complicates the learning problem. Hence,
in the remaining experiments, we restrict ourselves to use small
working ROIs that have good coverage of the manually labeled
foreground in the training data.

Effect of training set size

The experiments above use reference segmentations from 70
subjects for training. Such a large training set may be impractical for
real-world applications. To investigate the effect of training set size on
the error correction performance, we performed experiments using
various numbers of training subjects (1–5, 10, and 20). To facilitate
the comparison with the earlier results, the 10 cross-validation
experiments above were repeated with the same partitioning of the
subjects into training and test sets. However, in each experiment, only
a subset of the full training set was used to train classifiers.

Fig. 7 shows the error correction performance with respect to the
number of training data. Even using a single image for training, our
method achieves a significant improvement over the host method. As
more subjects are added to the training set, the segmentation
performance increases, although with diminishing returns.

Multi-atlas segmentation with label fusion

Fig. 8 shows the results of the parameter selection experiment for
one of the cross-validation experiments. The optimal parameters for
this experiment, found using leave-one-out analysis among the
atlases, were r=2 and σ=0.05. Optimal parameters found for the
remaining 9 cross-validation experiments were similar, with r∈ [2, 3]
and σ ∈ [0.05, 0.1].

On average, the multi-atlas approach produced 372 mislabeled
voxels for each hippocampus. The working ROI for EC and DL training
was obtained by a single-voxel dilation of the host segmentation
results. On average, this ROI covered 98.7% of the manually labeled
hippocampal voxels. The EC method produced 13.7% fewer errors
than the multi-atlas method alone (321 mislabeled voxels). By
contrast, DL produced worse results with 435 mislabeled voxels.
Fig. 10 shows the spatial patterns of disagreement between automatic
and reference segmentation before and after applying EC and DL.
Consistent under-segmentation near the head and tail of the
hippocampus is reduced substantially by the EC method, while the
DL method introduces a new pattern of over-segmentation along the

Table 5
Hippocampal segmentations produced by FreeSurfer reported in the recent literature.
The results are summarized in terms of relative volume difference, i.e. the volume ratio
between automatic and manual segmentations, and Dice overlap compared to manual
segmentations. The volume ratios are estimated based on the volumes of automatic and
manual segmentations reported in the corresponding work.

Methods MRI Field
Strength

Relative volume
difference

Dice overlap

(Fischl et al., 2002) N/A ∼105% N/A
(Khan et al., 2008) 1.5 T N/A 0.70 to 0.85
(Cherbuin et al., 2009) 1.5 T ∼125% N/A
(Morey et al., 2009) 1.5 T ∼120% ∼0.82
(Morra et al., 2009) 1.5 T N/A 0.73
(Sanchez-Benavides et al., 2010) 1.5 T ∼103% ∼0.78
(Akhondi-Asl et al., 2011) 3 T ∼150% 0.63
(Pardoe et al., 2009) 3 T ∼140% ∼0.7
ours 3 T ∼170% ∼0.66
ours after EC 3 T ∼97% ∼0.86

Table 6
The ability of working ROIs generated with different radii of dilation to cover the
reference hippocampal segmentations.

Dilation
radius

Working ROI size
(voxels)

% Hippocampal
voxels in ROI

% ROI voxels in
hippocampus

1-voxel 5978 99.67 32.19
2-voxel 8904 99.97 21.68
3-voxel 12234 99.99 15.78

1−voxel dilation 2−voxel dilation 3−voxel dilation
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Fig. 6. Dice overlaps of hippocampal segmentation when different dilations are used to
generate the working ROIs for direct learning and error correction. Results for left and
right sides are displayed separately.
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Fig. 7. Effect of training set size on EC performance. Left: the average number of mislabeled voxels after error correction vs. the size of the training set (error bars at±1 s.d.). The average
number ofmislabeled voxels before error correction, ±1 s.d., is shown in blue. Right: Dice overlap between EC results and reference segmentations vs. training set size, with the blue line
showing Dice overlap without error correction.
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Fig. 9. Bland–Altman plots comparing automatic volume estimates produced by multi-atlas based segmentation to manual volume estimates. Each point corresponds to a
hippocampal segmentation of one of the two hemispheres in one subject. The difference between automatic and manual estimates is plotted against their average. The solid
horizontal line corresponds to the average difference, and the dashed lines are plotted at average ±1.96 standard deviations of the difference.
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hippocampus boundary. Fig. 9 shows the volume differences after
applying the error correction. The negative volume bias is significantly
reduced. Table 7 shows the average Dice overlap for each of the cross-
validation experiments. Overall, EC improves the Dice overlap from
0.88 to 0.90. The improvement is statistically significant, with
pb0.00001 on the Paired t-test.

Fig. 11 shows the performance of the multi-atlas approach and
the error correction method with respect to the number of atlases

used. The numbers of atlases tested are 2, 3, 4, 5, 10, and 20. The
experiment with one atlas is not included because using one atlas
cannot produce training data for the error correction algorithm.
Note that using fewer atlases, the multi-atlas label fusion technique
produced less accurate segmentations. As the number of atlases
increased, the segmentation accuracy also increased but with
reduced increasing rates. This observation is consistent with
previous studies, such as Heckemann et al. (2006), that quantified

Table 7
Results of automatic hippocampus segmentation using the multi-atlas label fusion method and the wrapper methods. Each row gives the average Dice overlap with reference
segmentation for one cross-validation experiment. The bold font highlights the best results.

Exp. Left Right

Initial (Dice) DL (Dice) EC (Dice) Initial (Dice) DL (Dice) EC (Dice)

1(σ=0.05, r=2) 0.878±0.036 0.858±0.025 0.896±0.030 0.874±0.017 0.859±0.022 0.895±0.020
2(σ=0.05, r=3) 0.877±0.029 0.866±0.026 0.895±0.025 0.863±0.040 0.869±0.028 0.893±0.032
3(σ=0.1, r=2) 0.885±0.026 0.866±0.023 0.904±0.020 0.869±0.039 0.861±0.034 0.892±0.036
4(σ=0.05, r=3) 0.881±0.026 0.867±0.026 0.902±0.025 0.866±0.043 0.868±0.029 0.892±0.038
5(σ=0.05, r=3) 0.886±0.020 0.870±0.024 0.906±0.017 0.877±0.026 0.872±0.025 0.901±0.023
6(σ=0.1, r=2) 0.889±0.030 0.866±0.034 0.904±0.029 0.882±0.025 0.869±0.025 0.904±0.023
7(σ=0.1, r=3) 0.891±0.018 0.868±0.024 0.904±0.019 0.869±0.022 0.873±0.026 0.897±0.021
8(σ=0.1, r=3) 0.883±0.027 0.879±0.017 0.908±0.019 0.873±0.031 0.870±0.023 0.895±0.027
9(σ=0.1, r=2) 0.896±0.024 0.872±0.024 0.910±0.020 0.882±0.023 0.870±0.024 0.900±0.021
10(σ=0.05, r=2) 0.890±0.016 0.874±0.019 0.908±0.013 0.872±0.024 0.876±0.016 0.903±0.021

Fig. 10. The spatial patterns of disagreement between the automatic segmentations of the hippocampus in the multi-atlas label fusion experiment (MALF) and the corresponding
reference segmentations, plotted after normalization to a common reference space. See caption to Fig. 4 for details.
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Fig. 11. The figure on the left plots the average number of mislabeled voxels after error correction vs. the size of the training set (error bars at ±1 s.d.). The average number of
mislabeled voxels before error correction, ±1 s.d., is shown in blue. The figure on the right similarly plots Dice overlap between error correction results and reference segmentations
vs. training set size, with the blue line showing Dice overlap without error correction.
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the relationship between the number of atlases used for label fusion
and segmentation accuracy. On the other hand, using fewer atlases
also provided fewer training data for the EC algorithm. In this test,
similar improvements were produced by the error correction
technique when different numbers of atlases were used.

Brain extraction

Since BET segmentations were well aligned with the manual
segmentations, and most segmentation errors were cases of back-
ground mislabeled as brain tissue, we defined the working ROI by
performing a one-voxel dilation of the brain segmentation produced
by BET. On average, this ROI covered 99.3% of the foreground voxels in
the manual segmentation.

An example of the segmentation improvement produced by the EC
method is shown in Fig. 12. On average, each brain contains 9.7×105

voxels. BET produced 1.1×105 mislabeled voxels. EC produced 29%
fewer errors (8.0×104 mislabeled voxels); by contrast, DL produced
worse segmentations with 9.1×104 mislabeled voxels. Table 8 shows
the results in terms of average Dice overlap for each of the 10 cross-
validation experiments. The improvement achieved by EC over the
host method is significant, with pb0.00001 on the paired t-test.

Fig. 13 shows the error correction performance with respect to
the number of training data. Again, the pattern noted in hippo-
campal segmentation experiments was observed. Although BET
already produces good brain extraction results, the wrapper
algorithm still could make significant improvements with only
one training image.

Fig. 12. Brain extraction on T1-weighted MR images. Left to right: original image, manual brain extraction, initial brain extraction produced by BET, final segmentation produced by
the EC method. The second row gives a zoom in view.

Table 8
Results of automatic brain extraction using BET and the wrapper methods. Each row
gives average Dice overlap with manual segmentation for one cross-validation
experiment. The bold font highlights the best results.

Exp. Initial (Dice) DL (Dice) EC (Dice)

1 0.941±0.032 0.954±0.033 0.959±0.031
2 0.956±0.010 0.967±0.007 0.972±0.007
3 0.935±0.036 0.943±0.034 0.948±0.036
4 0.952±0.018 0.968±0.011 0.973±0.010
5 0.955±0.017 0.967±0.009 0.971±0.008
6 0.946±0.032 0.960±0.030 0.964±0.029
7 0.950±0.024 0.967±0.025 0.970±0.024
8 0.945±0.030 0.957±0.028 0.961±0.027
9 0.951±0.016 0.959±0.012 0.963±0.009
10 0.944±0.031 0.957±0.028 0.962±0.028
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Fig. 13. Effect of training set size on EC performance in the brain extraction experiment. Left: the average number of mislabeled voxels after error correction vs. the size of the training
set (error bars at ±1 s.d.). The average number of mislabeled voxels before error correction, ±1 s.d., is shown in blue. Right: average Dice overlap between EC results and manual
segmentations vs. training set size, with the blue line showing Dice overlap for BET without error correction.

979H. Wang et al. / NeuroImage 55 (2011) 968–985



Author's personal copy

Brain tissue segmentation

The manual segmentation protocol in IBSR presents certain
challenges for evaluating segmentation methods. The protocol
merges extraventricular CSF into the gray matter label (see
Fig. 14). Consequently, a voxel labeled as CSF by FAST should be
considered correctly labeled if that voxel has the grey matter label
in the IBSR manual segmentation. To allow quantitative evaluation,
we merge CSF into the gray matter label for both manual and
automatic segmentation, and report overlaps for the white matter
and merged gray matter labels. Note that our wrapper methods
could be directly applied with any manual segmentation protocol.
Merging CSF into gray matter is done purely to avoid an unfair
comparison with FAST.

Fig. 14 shows segmentation examples produced by the FAST
algorithm and the two wrapper algorithms. The average volume of
the brain ROI was 9.7×105 voxels (recall from the Materials and
methods section that the working ROI for this experiment is the
manual brain mask from IBSR). On average, FAST produced 8.9×104

mislabeled voxels. For explicit EC, the error detection step produced
the precision of 92% (i.e., the fraction of voxels marked mislabeled
that were actually mislabeled) with the recall of 84% (i.e., the fraction
of mislabeled voxels that were detected). The error correction step

correctly assigned new labels to 91% of the detected mislabeled
voxels. Overall, explicit EC produced 21% fewer errors than FAST
(7.0×104 mislabeled voxels). Implicit EC produced 17% fewer errors
than FAST (7.4×104 mislabeled voxels). Since the gray matter and
white matter have good appearance contrast, error detection
achieved high accuracy. As a result, explicit EC outperforms implicit
EC, despite having a lower computational cost. By contrast, DL
produced worse segmentations with 8.1×104 mislabeled voxels.
Again, the improvements achieved by implicit EC and explicit EC are
significant, with pb0.00001 on the paired t-test. Table 9 shows the
results in terms of Dice overlap for each of the 10 cross-validation
experiments. Like in the previous experiments, the error correction
methods outperformed DL and the host segmentation method.

Fig. 15 shows the error correction performance with respect to the
number of training data for both EC algorithms.When only one or two
training subjects were used, implicit EC produced slightly better
performance than explicit EC. These results suggest that due to the
limited number of training subjects, error detection could not be
reliably done. However, when more than two training subjects were
used, explicit EC produced slightly better results than implicit EC.
Overall, significant improvements were achieved by both implicit and
explicit EC when two or more training subjects were used, and using
more training data consistently resulted in greater improvement.

Fig. 14. Brain tissue segmentation in T1-weighted MR images. Left to right: original image; manual segmentation consisting of white matter and gray matter and ventricle labels;
three-tissue segmentation produced by the host method (FSL FAST); segmentation after correction by implicit EC; segmentation after correction by explicit EC. The second row
displays a zoomed in view of the left temporal lobe. The arrow points to one significant correction made by the two ECmethods. Note that the sulcal CSF in the FAST result is merged
with the gray matter label for consistency with the manual segmentation (see text for details).

Table 9
Results of automatic brain extraction using FAST and the wrapper methods. Each row gives average Dice overlap withmanual segmentation for one cross-validation experiment. The
bold font highlights the best results.

Exp. Gray matter White matter

Initial DL IEC EEC Initial DL IEC EEC

1 0.939±0.010 0.949±0.006 0.951±0.009 0.954±0.008 0.882±0.022 0.898±0.010 0.901±0.013 0.907±0.012
2 0.935±0.005 0.944±0.008 0.946±0.006 0.949±0.006 0.874±0.019 0.890±0.022 0.896±0.019 0.902±0.019
3 0.938±0.006 0.933±0.022 0.941±0.016 0.941±0.021 0.882±0.011 0.879±0.026 0.892±0.017 0.894±0.022
4 0.936±0.007 0.945±0.008 0.948±0.007 0.951±0.007 0.880±0.014 0.892±0.011 0.899±0.010 0.905±0.010
5 0.937±0.010 0.946±0.008 0.950±0.006 0.953±0.006 0.878±0.022 0.891±0.017 0.901±0.013 0.907±0.013
6 0.939±0.008 0.947±0.007 0.950±0.006 0.954±0.006 0.886±0.016 0.898±0.012 0.904±0.009 0.910±0.008
7 0.937±0.007 0.941±0.023 0.949±0.008 0.949±0.015 0.879±0.022 0.893±0.020 0.903±0.016 0.906±0.018
8 0.938±0.010 0.946±0.008 0.951±0.007 0.954±0.006 0.879±0.021 0.892±0.019 0.902±0.015 0.909±0.014
9 0.939±0.009 0.943±0.012 0.949±0.009 0.951±0.010 0.880±0.021 0.884±0.029 0.898±0.022 0.902±0.024
10 0.934±0.006 0.947±0.008 0.948±0.005 0.951±0.005 0.874±0.019 0.893±0.019 0.898±0.015 0.904±0.015
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Discussion

Across all four applications considered above, both EC algorithms
achieved a significant improvement in accuracy relative to themanual
segmentations. The number of mislabeled voxels was reduced by 72%
for FreeSurfer hippocampus segmentation, 14% for multi-atlas
hippocampus segmentation, 29% for BET brain extraction, and 21%
for FAST brain tissue segmentation. In each experiment, both EC
methods out performed the DL method, demonstrating that including
the results of the host method segmentation as contextual features
improves classifier performance. However, as Figs. 4d, e and 10d, e
show, neither DL nor EC are capable of completely eliminating
consistent differences between automatic and reference segmenta-
tions. This suggests that some aspects of these consistent differences
are too complex for AdaBoost to learn, at least using the features
employed in this paper. In all four experiments, improvements were
achieved even when very few images were used for training.
However, larger training sets consistently led to improved perfor-
mance. Overall, these results suggest that the EC method is capable of
consistently improving segmentation performance across a broad
range of medical image segmentation problems.

Comparison to the state of the art segmentation methods

Segmentation performance produced by the EC method compares
favorably with the state of the art in published work. Before making
such a comparison, we echo the point made by Collins and Pruessner
(2010) that direct comparisons of Dice overlaps and other quantita-
tive segmentation quality measures across publications are difficult
and not always fair, as these measures depend not only on the ability
of the automatic method to mimic the human expert, but also on the
underlying segmentation protocol, the imaging protocol, and the
patient population. Nevertheless, the comparisons carried out below
indicate the highly competitive performance achieved by combining
host methods with error correction.

Segmentation of the hippocampus

Due to the central role of the hippocampus inmemory encoding and
its vulnerability to neurodegenerative diseases, there has been intense
interest in MRI-based hippocampal morphometry. Many automatic
approaches for hippocampus segmentation have been proposed, e.g.,
Carmichael et al. (2005), Hammers et al. (2007), Powell et al. (2008),
Morra et al. (2008), vander Lijn et al. (2008),Morra et al. (2009), Chupin

et al. (2009), Pluta et al. (2009), Wolz et al., (2009), Collins and
Pruessner (2010), and Leung et al. (2010). Table 10 summarizes the
results of automatic hippocampus segmentation from recent publica-
tions. Most results are reported in terms of average Dice overlap, but a
few are reported in terms of the average Jaccard index (J I (A, B)=|A ∩
B|/|A ∪ B|). A trend revealed in the table is that most of the best
hippocampal segmentation approaches use multi-atlas label fusion.
Furthermore, automatic hippocampal segmentation tends to reach
better consistency withmanual segmentations in healthy subjects than
in subjects with neurodegenerative diseases.

Our experiment with FreeSurfer demonstrates how the error
correction scheme can adapt a general segmentation tool to a different
manual segmentation protocol and a different imagingmodality. On the
3T MR images used in our experiment, FreeSurfer produced segmenta-
tions that overlapped poorly with our reference segmentations (the
averageDiceoverlapwas0.660). However, the EC approach successfully
adapted FreeSurfer segmentations better to match those created by the
reference segmentation protocol. Dice overlaps with the reference
segmentation after error correction (0.865 on average) are competitive
with many of hippocampal segmentation results for normal controls
and MCI patients published in the last few years.

However, our most competitive hippocampus segmentation
results were achieved by pairing the EC method with multi-atlas
label fusion. According to Table 10, the best published results for
hippocampus segmentation to date have been produced by Collins
and Pruessner (2010) and Leung et al. (2010). Both papers use multi-
atlas segmentation. Collins and Pruessner (2010) evaluate segmen-
tation performance using a leave-one-out strategy on 80 normal
controls. Leung et al. (2010) use a template library of 55 atlases;
however, for each atlas, both the original image and its flipped mirror
image are used as atlases. Hence, Leung et al. (2010) effectively use
110 atlases for label fusion. Our multi-atlas approach uses only 20
atlases and, without error correction, produces results that are
comparable to the state of the art for normal controls and are slightly
worse than the state of the art for MCI patients. With error correction,
the results for both groups improve by ∼2% Dice overlap, yielding the
same accuracy as the state of the art for MCI patients and better
accuracy than the state of the art for normal controls. Thus, in so far as
Dice overlaps across different methods can be compared, our method
produces segmentation results as good or better than the state of the
art, while requiring substantially fewer manually labeled images for
training. However, unlike a number of other methods, our evaluation
did not include AD subjects. Hence, it remains unclear howwell multi-
atlas segmentation with EC performs in the presence of severe
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Fig. 15. The average number of voxelsmislabeled by the implicit and explicit variants of the ECmethod vs. the size of the training set (error bars at±1 s.d.). The average number of voxels
mislabeled by the host method, ±1 s.d., is shown in blue.
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hippocampal atrophy. Another potential limitation in our evaluation
is that our gold standard segmentations were produced by manually
editing automatic segmentations rather than manually segmenting
each hippocampus from scratch. Hence, it is possible that our gold
standard segmentations are influenced by the automatic segmenta-
tion results produced by Pluta et al. (2009).

Brain extraction and tissue segmentation

Liu et al. (2009) evaluate a number of recent brain extraction
methods, including Shattuck and Leahy (2002), Segonne et al. (2004),
Zhuang et al. (2006), and their ownmethod on the IBSR dataset. Their
reported Dice overlap varies from 0.897 to 0.955. In our experiments,
the BET algorithm produced competitive results with the average Dice
overlap of 0.947. After EC, we produced Dice overlap of 0.964, which is
almost 1% higher than the best results reported in Liu et al. (2009).

For the brain tissue segmentation problem, Awate et al. (2006),
Greenspan et al. (2006), Huang et al. (2009) report their methods'
performance on the IBSR dataset. However, the problem of inaccurate
CSF labels was handled differently in each paper. Hence, only the
white matter segmentation results are comparable between these
papers. The average Dice overlaps in the white matter reported by
these three papers are 0.887, 0.857, and 0.876 respectively. In our
experiments, FAST produced competitive results with the average
Dice overlap of 0.879. After error correction, we produced 0.905,
which is almost 2% higher than the other methods.

Our improvements over these state of the art methods are at least
comparable to the improvements introduced by these state of the art
methods over their predecessors.

Relationship with prior work on object segmentation and
machine learning

Our error correction method applies learning-based classification
to perform segmentation, which is a commonly used technique in
computer vision (Kumar and Hebert, 2003; Shotton et al., 2006; Tu
and Bai, 2010) and medical image analysis (Tu et al., 2007; Morra
et al., 2008). In particular, our work is closely related to Morra et al.
(2008) and Tu and Bai (2010), where instead of segmentation results
produced by other segmentation methods, the results produced by
earlier iterations of the learning algorithm itself are treated as high-
level contextual features and are included in the learning process. By
contrast, the main novel idea in our paper is to use machine learning
as a corrective technique for segmentations produced by a given host
method, rather than training classifiers from scratch to perform the
segmentation problem. As a consequence, we report substantially
better hippocampus segmentation results than Morra et al. (2009) for
normal controls (0.908 vs. 0.835).

As in our approach, Chupin et al. (2009) also use an error
correction procedure to improve the final results of their hippocampal
segmentation application. However, their error correction approach
was specially designed for their hippocampal segmentation problem.
By contrast, our technique is general and can be easily applied to a
wide range of segmentation problems.

Scenarios for practical application of error correction

The experiments in this paper illustrate two usage scenarios for
the proposed method. In the first scenario, error correction is used to
boost the performance of an existing automatic segmentation tool,

Table 10
Hippocampal segmentation performance reported in the recent literature compared to the results obtained by the ECwrappermethodwith FreeSurfer andmulti-atlas label fusion as
the host methods.

Methods and description Dice JI Tested Cohort

(Heckemann et al., 2006): multi-atlas based segmentation 0.82 30 normal controls
(Hammers et al., 2007): multi-atlas based segmentation 0.76(sclerotic side) 9 patients with unilateral

hippocampal sclerosis0.83(contralateral side)
(Powell et al., 2008): machine learning based classification 0.85 15 subjects (with no

population description)
(Barnes et al., 2008): multi-atlas based segmentation 0.87 19 normal controls,

0.86 36 AD patients
(Khan et al., 2008): single-atlas based segmentation
with initialization by FreeSurfer

0.86 4 normal controls

(van der Lijn et al., 2008): multi-atlas+graph cuts 0.858 20 elderly subjects covering
7 population variation in 7
hippocampus size

(Morra et al., 2009): machine learning based classification 0.835 20 normal controls
0.802 20 AD patients

(Wolz et al., 2009): multi-atlas+graph cuts 0.860 20 normal controls
+ 20 MCI patients+20 AD patients

(Chupin et al., 2009): landmark-guided single-atlas based
segmentation, followed by a registration error detection and
correction procedure

0.87 16 young normal controls
0.85 8 normal controls
0.84 8 normal controls+8 with

known hippocampal sclerosis+7
with normal hippocampal volumes

(Collins and Pruessner, 2010): multi-atlas based segmentation 0.887 80 young normal controls
(Leung et al., 2010): multi-atlas based segmentation 0.80 10 normal controls

0.81 10 MCI patients
Multi-atlas based segmentation 0.887 0.798 57 normal controls

0.872 0.774 82 MCI patients
Multi-atlas+error correction 0.908 0.833 57 normal controls

0.893 0.808 82 MCI patients
FreeSurfer: single-atlas based segmentation 0.673 0.508 57 normal controls

0.651 0.485 82 MCI patients
FreeSurfer+error correction 0.877 0.782 57 normal controls

0.859 0.754 82 MCI patients

The results are given in terms of Dice overlap (Dice(A, B)=
2 A∩Bj j
Aj j + Bj j) and Jaccard index (J I (A, B)=|A∩ B|/|A ∪ B|). Note that Morra et al. (2009) report results bymixing controls and

AD patients. They also report the performance for each diagnostic group relative to the mixed results. The results reported here for (Morra et al., 2009) are estimated from their
reported results.
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provided example manual segmentations on a sample of the user's
imaging data. As the FreeSurfer example illustrates, error correction is
capable of adapting the host method to the particular imaging and
segmentation protocols employed by the user, without the need to
explicitly retrain the host method. This scenario is also illustrated by
the experiments on whole brain segmentation. The drawback of this
scenario is the need for the user to provide example manual
segmentations. Thus, the benefit to users with small datasets may
be limited. Such users may decide that if they were to embark on the
path of manual segmentation, then they might as well segment all
their images manually. However, for users with large datasets, the
burden of segmenting the whole dataset manually is significantly
larger than the cost of providing 10 or 20 training examples, while
even a small improvement in segmentation accuracy may be of
significant benefit. Additionally, many users with small or large
datasets may be able to leverage existing segmentations from earlier
studies, provided that they use similar imaging and anatomical
protocols and cover similar subject populations. Lastly, the burden of
manual segmentation may be reduced by manually editing the results
of the host segmentation method, rather than generating manual
segmentations from scratch.

For users with access to example manual segmentations, an
alternative to error correction is to retrain or retune the host
segmentation method. Based on the experiments performed in this
paper, it is not possible to predict which approach would lead to greater
improvement in segmentation accuracy. However, retraining may be
outside of the technical expertise for someusers, or suchanoptionmight
not be provided by the software implementation of the host method. By
contrast, error correction can be performed relatively easily, and a
reference open-source software implementation has been provided.

The second scenario, illustrated in the multi-atlas experiment, is for
error correction to be incorporated into an image segmentation tool by
the tool's developer. The multi-atlas experiment shows that even when
there are no imaging or anatomical protocol differences between the
data on which a host method is trained and the data to which it is
applied, error correction can still improve performance significantly.
Furthermore,when thehostmethod is itself trainedusing example data,
no additional example segmentations are needed for error correction,
since training can be performed in a leave-one-out framework. Thus,
error correction offers an opportunity to improve the performance of
various existing segmentation tools at little additional cost to the
developer, and virtually no cost to the user.

Limitations and future work

We have chosen a fairly straightforward approach to apply machine
learning, which combines AdaBoost and simple intensity features.
Other classifiers may perform better than AdaBoost, or they may be
complimentary to it, leading tomore accurate error correction. Likewise,
including additional higher-order features may improve performance.
For example, Haar filters offer information-rich and robust features that
have been successfully applied to many other medical image applica-
tions (Tu et al., 2007,Morra et al., 2008). Using such featureswill bemore
appropriate for problems where there is a significant variation in the
scale and orientation of the images.

In the current EC method, error correction is performed indepen-
dently at each voxel. Imposing regularity conditions on the final
segmentation after error correction, for instance using a Markov
random field prior or a prior that enforces topological constraints,
may further improve segmentation accuracy.

In our current approach, we use a single host method, a set of
example segmentations from a single expert, and a single training set
that combines all cohorts in a given study. A natural extension of the
method is to combine results from multiple host methods to provide
the ability to handle segmentations by different experts, and to offer
strategies for dealing with heterogeneous subject populations. The

challenge in dealing with multiple host segmentations and multiple
manual segmentations is that the number of patterns of systematic
disagreement between manual and automatic segmentation grows
quadratically. One way to address this problem is to derive consensus
automatic and manual segmentations using a method such as STAPLE
(Warfield et al., 2004), whichwould allow the current error correction
method to be applied directly. However, this approach sacrificesmuch
of the information contained in the original automatic and manual
segmentations. Heterogeneous populations may be handled by
training error correction classifiers separately for subjects with
different diagnoses. Alternatively, diagnosis and demographic vari-
ables could be included as features for classifier training, allowing the
classifier to learn the patterns of error that are common across the
population.

Conclusions

We presented a simple but effective learning-based method for
reducing the consistent errors that automatic tools make relative to
manual segmentations. The main contribution over prior work on
learning-basedmedical image segmentationwas to include the results of
the segmentation by a given host method as contextual features for
classifier training. Our results, conducted in three different segmentation
problems using four different host methods showed that the proposed
approach consistently improves segmentation accuracy relative to
manual segmentations, even when just a handful of training datasets
are provided. Furthermore, by pairing our error correction method with
well-established host segmentation methods, we obtained some of the
best results published so far for hippocampus segmentation, brain
extraction, and brain tissue classification. Anticipating that similar
improvements can be obtained in other segmentation problems, we
provided an open-source implementation of the error correctionmethod
and identified two usage scenarios, one targeting users of existing
segmentation tools that seek to adapt these tools to their data, and the
other targeting developers of training-based automatic segmentation
algorithms.
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Appendix A. Reliability of Manual Hippocampus Segmentation

To put our hippocampus segmentation results in the proper
context,we report the reliability of ourmanual segmentation protocol.
Table 11 summarizes the intra-rater and inter-rater reliability in
terms of Dice overlap when the raters segmented the hippocampus
from scratch. The reliability test was done on 10 randomly selected
images.

To efficiently obtain reference segmentations for the 139 ADNI
images, the manual segmentations used in our experiment were
obtained by a rater (MA) editing the automatic segmentation results
produced by a semi-automatic method (Pluta et al., 2009). For this
case, the intra-rater reliability test obtained an average 0.923 Dice
overlap on 9 randomly selected images, slightly better than
segmenting from scratch.

Shape-Based Normalization of the Hippocampus for Visualizing
Patterns of Disagreement Between Automatic and
Manual Segmentation

To normalize the reference and automatic segmentations of the
hippocampus from multiple subjects to a common coordinate space, we
employ the shape-based normalization approach from (Yushkevich et al.,
2006b). A deformable cm-rep model is fitted to each binary reference
hippocampus segmentation. The cm-rep model is a deformable model
that explicitly specifies the medial axis of the hippocampus as a
parametric surface, as well as the local thickness of the hippocampus as
a parametric scalarfield definedover themedial axis. Theboundary of the
hippocampus is derived from the medial axis and thickness scalar field
analytically. This model is fitted to binary segmentations of the
hippocampus by maximizing the overlap between the region enclosed
by the model's boundary and the binary segmentation. The model
imposes a 3D coordinate system on the interior of the hippocampus. The
medial axis of themodel is parameterized by apair of variables μ1 and μ2 ,
which denote two axes of the cm-rep coordinate system. For every
location on the medial manifold, two line segments, called spokes,
emanate and reach the boundary of the model. These line segments are
orthogonal to the boundary; they completely span the model's interior,
and thus provide the third axis in the cm-rep coordinate system, denoted
by the variable ξ. ξ describes the relative depth of a point on a model's
interior. It varies from 0 at points on the medial axis to +1 and −1 at
points where the two spokes reach the boundary. Therefore, any point
within the hippocampal volume is represented by the vector (μ1 , μ2 , ξ).
The 3D coordinate system establishes a one-to-one correspondence
between the interiors of models fitted to different hippocampus binary
segmentations. To extend the correspondence to the exterior of the fitted
models, we allow ξ to take values beyond±1. Additional details on
shape-based correspondence using the cm-repmodel are in (Yushkevich
et al., 2006b).
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