Development and Evaluation of White Matter Resources of the IIT Human Brain Atlas

Xiaoxiao Qi, Shengwei Zhang, Konstantinos Arfanakis

Department of Biomedical Engineering
Illinois Institute of Technology

www.nitrc.org/projects/iit
Comprehensive, multi-channel atlas of the young adult brain.

The IIT Diffusion Tensor template outperforms other standardized templates and study-specific template1,2.

2. Zhang S. & Arfanakis K. Neuroimage 2018
Resources & Data

• **Resources of the IIT Human Brain Atlas used to build the WM connectome**
 – Tissue probability maps
 – Probabilistic GM labels (Desikan)
 – HARDI template

• **Data used to evaluate the WM connectome**
 – 20 unrelated subjects from the Human Connectome Project (HCP)
 – 10 female, 28.8 ± 4.22 years of age, 22-36 years age range
 – $b=1000$ s/mm2, approximately 90 diffusion weighting directions

2. Glasser MF. et al. Neuroimage 2013
Tractography

- **Tractography using MRtrix3**
 - Tracking algorithm: Second-order Integration over Fiber Orientation Distributions\(^1\) (iFOD2)
 - Anatomically-constrained tractography\(^2\) (ACT)
 - Spherical-deconvolution informed filtering of tractograms\(^3\) (SIFT)

1. Tournier JD, et al. ISMRM 2010
Evaluation

• Small edges of the IIT connectome were filtered out.
Evaluation

- 20 HCP connectomes were constructed using the same tractography methods.
- Edge by edge comparison between the IIT connectome and 20 HCP connectomes.
IIT Connectome:

- Edges are spatially matched well to the HCP subjects.
- Track density images have higher correlation with those of individual HCP subjects than individual HCP subjects to the others.
Evaluation

• Parcellations using the connectivity information

- Corpus callosum
 - FRONTAL
 - PARIETAL
 - MOTOR
 - TEMPORAL
 - OCCIPITAL
 - SENSORY

- Thalamus
 - Frontal Lobe
 - Parietal Lobe
 - Sensory cortex
 - Motor cortex
 - Temporal Lobe
 - Occipital Lobe

• Edge information

Program No. 0242 Plasma No. 21

www.nitrc.org/projects/iit

ILLINOIS INSTITUTE OF TECHNOLOGY
Each GM label connects to multiple GM labels

4 seed regions of interest were added to the Desikan-Killiany regions for completeness of the resulting connectivity information:

- Axial section through medulla
- Fornix body
- Left optic tract
- Right optic tract
The Multi-layer WM Labels of the IIT Human Brain Atlas:

- Each voxel is assigned a list of labels representing the most probable connections.
- The corresponding multi-layer probability map contains the probability of each connectivity label is provided.
Multi-layer WM Labels

- Find rapidly the connectivity of a selected region of interest using the \textit{regionconnect}^{tm} app (by MRIIT)
- Available at www.iit.edu/~mri
74 WM Bundles were extracted using RecoBundles1 and can be used as regions of interest in ROI-based analyses.
Conclusion

WM Resources of the IIT Human Brain Atlas:

- Facilitate structural connectivity studies
- Facilitate WM regions of interest analyses
- Support multi-channel studies
- Allow integration of findings across studies
- Released with IIT Human Brain Atlas version 5.0
Acknowledgments

This work was supported by:
National Institute of Biomedical Imaging and Bioengineering (NIBIB) R21 EB006525
National Institute of Neurological Disorders and Stroke (NINDS) R21 NS076827
National Institute of Aging (NIA) R01 AG052200

www.nitrc.org/projects/iit

K. Arfanakis H. Peng S. Zhang A. Varentsova
X. Qi R. Ridwan R. Niaz Y. Wu

www.iit.edu/~mri