
Matlab Tool: Functional Analysis of Diffusion
Tensor Tract Statistics

1 Introduction

1.1 FADTTS summary

The aim of this tool is to implement a functional analysis pipeline, called FADTTS, for
delineating the structure of the variability of multiple diffusion properties along major white
matter fiber bundles and their association with a set of covariates of interest, such as age,
diagnostic status and gender, in various diffusion tensor imaging studies. The FADTTS
integrates five statistical tools: a multivariate varying coefficient model for allowing the
varying coefficient functions to characterize the varying association between fiber bundles
diffusion properties and a set of covariates, a weighted least squares estimation to estimate
the varying coefficient functions, a functional principal component analysis to delineate the
structure of the variability in fiber bundles diffusion properties, a global test statistic to test
hypotheses of interest, and a simultaneous confidence band to quantify the uncertainty in
the estimated coefficient function. FADTTS can be used to facilitate understanding normal
brain development, the neural bases of neuropsychiatric disorders, and the joint effects of
environmental and genetic factors on white matter fiber bundles.

1.2 Motivation

Diffusion Tensor Imaging (DTI), which can track the effective diffusion of water in the
human brain in vivo, has been widely used to map the structure and orientation of the
white matter fiber tracts of the brain (Basser et al., 1994b,a). In the current literature,
three major approaches to the group analysis of diffusion imaging data are region-of-interest
(ROI) analysis, voxel based analysis, and fiber tract based analysis (Smith et al., 2006;
O’Donnell et al., 2009; Snook et al., 2007). The ROI analysis used in some neuroimaging
studies (Bonekam et al., 2008; Gilmore et al., 2008) primarily suffers from the difficulty
in identifying meaningful ROIs. Voxel based analysis is used more commonly than ROI
analysis in neuroimaging studies (Chen et al., 2009; Focke et al., 2008; Camara et al., 2007;
Snook et al., 2005). The major drawbacks of voxel based analysis include the issues of
alignment quality and the arbitrary choice of smoothing extent (Hecke et al., 2009; Ashburner
and Friston, 2000; Smith et al., 2006; Jones et al., 2005). With the drawbacks mentioned
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of the ROI and voxel based analyses, there is a growing interest in the DTI literature in
developing fiber tract based analysis of diffusion properties (Smith et al., 2006; O’Donnell
et al., 2009; Yushkevich et al., 2008; Goodlett et al., 2009; Zhu et al., 2010b). Statistically,
diffusion properties along fiber bundles are functional data and its analysis requires advanced
functional data analysis methods (Li and Hsing, 2010; Yao and Lee, 2006; Hall et al., 2006;
Ramsay and Silverman, 2005, 2002).

There are several developments on the use of functional data analysis methods for the
statistical analysis of diffusion properties along fiber tracts, which all are “smoothing first,
then estimation” procedures. However, their methods are not capable of delineating the
structure of the variability in fiber bundles diffusion properties and for quantifying the un-
certainty in the estimated coefficient functions. To specifically address the limitations in
(Goodlett et al., 2009; Zhu et al., 2010b), FADTTS presents a functional analysis pipeline
for delineating the structure of the variability of multiple diffusion properties along major
white matter fiber bundles and their association with a set of covariates of interest, such as
age, diagnostic status and gender, in various diffusion tensor imaging studies.

1.3 FADTTS description

Compared with (Goodlett et al., 2009; Zhu et al., 2010b) and other existing literature, there
are five methodological contributions in FADTTS: first, a multivariate varying coefficient
model, second, a weighted least squares estimation, third, a functional principal component
analysis, fourth, a global test statistic based on a resampling method and fifth, a simultaneous
confidence band based on a resampling method. A schematic overview of FADTTS is given
in Fig 1. We describe each of these components briefly below. Detailed description and
related theorem proofs can be found in Zhu et al. (2010a).

1. Multivariate Varying Coefficient Model

Let s ∈ [0, L] be the arc length of any point on a specific fiber bundle relative to a fixed
end point of the fiber bundle, where L is the longest arc length on the fiber bundle. For
the i-th subject, we consider an J × 1 vector of diffusion properties, denoted by yi(sm) =
(yi,1(sm), · · · , yi,J(sm))T , and its associated arc length sm for the m-th location grid point on
the fiber bundle for m = 1, · · · ,M and i = 1, · · · , n, where M and n denote the numbers of
grid points and subjects, respectively. We consider a multivariate varying coefficient model
(Fan and Zhang, 1999; Wu and Chiang, 2000; Fan et al., 2003; Fan and Zhang, 2008; Wang
et al., 2008) , which assumes that for k = 1, · · · ,m and i = 1, · · · , n,

yi,j(s) = xTi Bj(s) + ηi,j(s) + εi,j(s) = xTi Bj(s) +
∞∑
l=1

ξij,lψj,l(s) + εi,j(s), (1)

where Bj(s) = (βj1(s), · · · , βjp(s))T is a p × 1 vector of coefficient functions of s and xi
is a p × 1 vector of covariates of interest with xi,1 = 1, εi,j(s) are measurement errors.
Moreover, ηi,j(s) =

∑∞
l=1 ξij,lψj,l(s) characterize individual curve variations from xTi Bj(s)
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Figure 1: A schematic overview of FADTTS: a functional multivariate varying coefficient
model for the diffusion properties of a tract, a weighted least square estimation method
for estimating the coefficient functions, a functional principal component analysis model for
analyzing the covariance structure, a hypothesis test for coefficient functions using both local
and global test statistics, a resampling method for estimating the p-value of the global test
statistics, a method of calculating the confidence bands of the coefficient functions based on
a resampling method.

and ξij,l are uncorrelated random variables with E(ξij,l) = 0 and E(ξ2ij,l) = λj,l such that

λj,1 ≥ λj,2 ≥ · · · ≥ 0 with
∑∞

l=1 λj,l < ∞ and
∫ L
0
ψj,l(t)ψj,l′(t)dt = 1(l = l′), where 1(·) is

an indicator function. There could be also some constraints on εi(s) = (εi,1(s), · · · , εi,J(s))T

and ηi(s) = (ηi,1(s), · · · , ηi,J(s))T ; see (Zhu et al., 2010a).
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2. Weighted Least Squares Estimation

To estimate the coefficient functions in B(s) = [B1(s), · · · , BJ(s)], we develop a weighted
least squares estimation method based on an adaptive local polynomial kernel (LPK) smooth-
ing technique (Fan and Gijbels, 1996; Wand and Jones, 1995; Wu and Zhang, 2006; Ramsay
and Silverman, 2005; Welsh and Yee, 2006; Zhang and Chen, 2007). Specifically, using
Taylor’s expansion, we can expand Bj(sm) at s to obtain

Bj(sm) = Bk(s) + Ḃj(s)(sm − s) = Aj(h, s)z(h, sm − s), (2)

where z(h, sm− s) = (1, (sm− s)/h)T and Aj(s) = [Bj(s), hḂj(s)] is a p× 2 matrix, in which
Ḃj(s) = (β̇j1(s), · · · , β̇jp(s))T is a p × 1 vector and β̇jl(s) = dβjl(s)/ds for l = 1, · · · , p. We
calculate a weighted least squares estimate of Aj(s) as follows. Let K(·) be a kernel function,
such as the Gaussian and uniform kernels (Fan and Gijbels, 1996; Wand and Jones, 1995).
For a fixed bandwidth h and each j, we estimate Aj(s) by minimizing an objective function
given by

n∑
i=1

M∑
m=1

[yi,j(sm)− xTi Aj(h, s)z(h, sm − s)]2K(h, sm − s), (3)

where K(h, ·) = K(·/h)/h is a rescaled kernel function. For each j, we pool the data from all

n subjects and select an optimal bandwidth h
(1)
j , denoted by ĥ

(1)
j , and we can obtain B̂j(s).

Combing all B̂j(s) leads to B̂(s) = [B̂1(s), · · · , B̂J(s)].

3. Functional Principal Component Analysis

To simultaneously construct all individual functions ηi,k(s), we also employ the local poly-
nomial kernel smoothing technique (Fan and Gijbels, 1996; Wand and Jones, 1995; Wu and
Zhang, 2006; Ramsay and Silverman, 2005; Welsh and Yee, 2006; Zhang and Chen, 2007).
Specifically, using Taylor’s expansion, we can expand ηi,j(sm) at s to obtain

ηi,j(sm) = di,j(s)
Tz(h, sj − s), (4)

where di,j(s) = (ηi,j(s), hη̇i,j(s))
T is a 2 × 1 vector. For each j and a fixed bandwidth h

(2)
j ,

we estimate di,j(s) by minimizing an objective function given by

M∑
m=1

[yi,j(sm)− xTi B̂j(sm)− di,j(s)
Tz(h, sm − s)]2K(h, sm − s). (5)

For each j, we pool the data from all n subjects and select the optimal bandwidth h(2),
denoted by ĥ(2), and estimate ηi,j(s) and ηi(s), denoted by η̂i,j(s) and η̂i(s), respectively.

We estimate η(s) and Ση(s, t) by using their empirical counterparts of the estimated
η̂i(s) as follows:

η̂(s) = n−1
n∑
i=1

η̂i,(s) and Σ̂η(s, t) = (n− J)−1
n∑
i=1

η̂i(s)η̂i(t)
T .
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Let B̂(s) = [B̂1(s), · · · , B̂J(s)] and ε̂i(sm) = yi(sm) − B̂(sm)Txi − η̂i(sm) be estimated
residuals for i = 1, · · · , n and m = 1, · · · ,M . We consider the kernel estimate of Σε(s, s)
given by

Σ̂ε(s, s) = (n− J)−1
n∑
i=1

M∑
m=1

K(h, sm − s)[ε̂i(sm)]⊗2∑M
m=1K(h, sm − s)

. (6)

Let Σ̃ε(sm, sm) = (n − J)−1
∑n

i=1[ε̂i(sm)]⊗2 for m = 1, · · · ,M . To select the optimal band-

width h(3), denoted by ĥ(3), we use a cross-validation score method. Following Rice and
Silverman (1991), we calculate the spectral decomposition of Σ̂η,jj(s, t) for each j as follows:

Σ̂η,jj(s, t) =
∞∑
l=1

λ̂j,lψ̂j,l(s)ψ̂j,l(t), (7)

where λ̂j,1 ≥ λ̂j,2 ≥ · · · ≥ 0 are estimated eigenvalues and the ψ̂j,l(t)’s are the corresponding
estimated principal components.

4. Hypothesis Test

In neuroimaging studies, most scientific questions require the comparison of fiber bundle
diffusion properties along fiber bundles across two (or more) diagnostic groups and the
assessment of the development of fiber bundle diffusion properties along time. Such questions
can often be formulated as linear hypotheses of B(s) as follows:

H0 : Cvec(B(s)) = b0(s) for all s vs. H1 : Cvec(B(s)) 6= b0(s), (8)

where C is a r × Jp matrix of full row rank and b0(s) is a given r × 1 vector of functions.
We propose both local and global test statistics. At a given grid point sm on a specific

tract, we test the local null hypothesis H0(sm) : Cvec(B(sm)) = b0(sm) against H1(sm) :

Cvec(B(sm)) 6= b0(sm). Let H̃ = diag(h
(1)
1 , · · · , h(1)J ) and u2(K) =

∫
u2K(u)du. We use a

local test statistic Sn(sm) defined by

Sn(sm) = nd(sm)T [C(Σ̂η(sm, sm)⊗ Ω̂−1X )CT ]−1d(sm), (9)

where Ω̂X = n−1
∑n

i=1 x⊗2i and d(s) = Cvec(B̂(s) − bias(B̂(s))) − b0(s). We test the null
hypothesis H0 : Cvec(B(s)) = b0(s) for all s using a global test statistic Sn defined by

Sn = n

∫ L

0

d(s)T [C(Σ̂η(s, s)⊗ Ω̂−1X )CT ]−1d(s)ds. (10)

We develop a wild bootstrap method to approximate the p-value of Sn.
Step (i): Fit model (1) under the null hypothesis H0, which yields B̂∗(sj), η̂

∗
i (sm) and

ε̂∗i (sj) for i = 1, · · · , n and m = 1, · · · ,M .

Step (ii): Generate a random sample τ
(g)
i and τi(sm)(g) from a N(0, 1) generator for

i = 1, · · · , n and m = 1, · · · ,M and then construct

ŷi(sm)(g) = B̂∗(s)Txi + τ
(g)
i η̂∗i (sm) + τi(sm)(g)ε̂∗i (sm).
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Then, based on ŷi(sm)(g), we recalculate H̃(1), B̂(s)(g), and d(s)(g) = Cvec(B̂(s)(g))− b0(s).

Subsequently, we compute S
(g)
n and Sn(sm)(g) via (9) and (10), respectively, where d(s) is

replaced by d(s)(g).

Step (iii): Repeat Step (ii) G times to obtain {S(g)
n,max = max1≤m≤nG

Sn(sm)(g) : g =

1, · · · , G} and calculate p(sm) = G−1
G∑
g=1

1(S
(g)
n,max ≥ Sn(sm)) for each sm. Then, p(sm) is the

corrected p-value at the location sm.
Step (iv): Repeat Step (ii) G times to obtain {S(g)

n : g = 1, · · · , G} and calculate p =

G−1
G∑
g=1

1(S
(g)
n ≥ Sn). If p is smaller than a pre-specified significance level α, say 0.05, then

we reject the null hypothesis H0.

5. Confidence Bands

For a given significance level α, we construct a confidence band for each βjl(s) such that

P (β̂L,αjl (s) < βjl(s) < β̂U,αjl (s) for all s ∈ [0, L]) = 1− α, (11)

where β̂L,αjl (s) and β̂U,αjl (s) are the lower and upper limits of the confidence band. Based on
Theorem 1 of (Zhu et al., 2010a), a 1 − α simultaneous confidence band for βjl(s) is given
as follows: (

β̂jl(s)−
Cjl(α)√

n
, β̂jl(s) +

Cjl(α)√
n

)
. (12)

We develop an efficient resampling method to approximate Cjl(α) as follows (Zhu et al.,
2007; Kosorok, 2003), see (Zhu et al., 2010a) for details.

2 Matlab functions

We implemented the FADTTS pipeline in Matlab. The following is the description of the
functions in FADTTS Matlab tool. We first give an overview of the Matlab function and
then explain each of the function in terms of function name, input, output, the function goal,
and remarks if desired. Examples and results will be given in the next section.

2.1 Function overview

1. Multivariate Varying Coefficient Model

MVCM read: read raw data and generate, arc length, standardized design and response
matrices, and related dimension parameters.

MVCM read1: read raw data and standardized generate design and response matrices.

MVCM read2: read raw response data and generate standardized response matrix.
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2. Weighted Least Squares Estimation

MVCM lpks wob: read arc length, design and response matrices and generate optimal
bandwidth for weighted least squares estimation.

MVCM lpks wb1: read arc length, design and response matrices, and optimal bandwidth
and generate the estimated coefficient functions, their first derivatives, and fitted re-
sponses using weighted least squares estimation.

3. Functional Principal Component Analysis

MVCM sif: read arc length and the residuals of response and generate the estimations of
η, ε, and Ση(s, t).

MVCM sif2: read arc length and the residuals of response and generate the estimations of
η, ε, and Ση(s, s).

MVCM eigen: read the estimation of η and generate the individual covariance matrices
and the the respective eigenvalues and eigenvectors.

MVCM ecm: read arc length and estimation of ε and generate the covariance matrix σε of
ε.

4. Hypothesis Test

MVCM lpks wb2: read arc length, design and response matrices, and optimal bandwidth
and generate the estimated coefficient functions, their up to third derivatives, and
fitted responses using weighted least squares estimation.

MVCM bias read arc length, design matrix, response matrix, optimal bandwidth, and so
on; and generate the bias of the estimation of B(s) using its up to the third order
derivative.

MVCM ht stat: read arc length, design matrix, the estimations of B(s), η, and ε, hypoth-
esis design matrix, and so on; and generate the global and local statistics.

MVCM grs: read design matrix, the estimations of B(s), η, and ε, and generate random
sample of response.

MVCM bstrp stat: read arc length, design matrix, the estimations of B(s), η, and ε, hy-
pothesis design matrix, and so on; and generate the global and local statistics without
bias adjustment.

MVCM bstrp pvalue3: read design matrix, response matrix, the estimations of B(s) and
its derivatives, global test statistics, hypothesis design matrix, number of bootstrap,
and so on; and generate the global p-value based on a resampling method.
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5. Confidence Bands

MVCM cb Gval: read arc length, design and response residual matrices and so on; and
generate Ckl for confidence bands.

MVCM CBands: read Gvalue, efitBetas and ebiasBetas and generate the simulated confi-
dence bands.

2.2 Function description

MVCM read

Function [NoSetup, arclength, Xdesign, Ydesign, scalediffusion]=MVCM read(tractdata,
designdata, diffusionFiles, nofeatures)

Input tractData: the text file containing (x, y, z) coordinates of all locations on a given
fiber tract. The data set should start from one end to the other end.
tractData is a L× 3 matrix, where L0 denotes the number of locations. 3 denotes
the three coordinates.

designData: the text file containing covariates of interest. Please always include the
intercept in the first column. designData is a n× p matrix, where n denotes the
number of subjects and p denotes the number of covariates.

diffusionFiles: a m × 1 cell containing the names of all fiber diffusion properties
files. Each fiber bundle diffusion properties should contain a L0×n matrix. Rows
correspond to the columns in tractData, while columns correspond to the columns
in designData.

nofeatures: the number of diffusion properties, denoted by m.

featurenames: a m× 1 cell of names.

properties.

Output NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number
of grid points, p− 1 is the number of covariates and m is the number of features.

arclength: a L0 × 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

Ydesign: a n× L0×m matrix.

scalediffusion: a m× 1 vector of scales for each properties.

Remark to avoid unnecessary errors, please use this function to preprocess the raw data
before you go to the weighted least squares estimation.
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MVCM read1

Function [Xdesign, Ydesign, scalediffusion]=MVCM read1(designdata, respdata)

Input designData: the text file containing covariates of interest. Please always include
the intercept in the first column. designData is a n× p matrix, where n denotes
the number of subjects and p denotes the number of covariates.

respdata: a n× L0 ×m matrix of response variables.

Output Xdesign: a n× p normalized design matrix.

Ydesign: a n× L0×m matrix.

scalediffusion: a m× 1 vector of scales for each properties.

Remark this function will save some time when just need to normalize design and response
matrices.

MVCM read2

Function [Ydesign, scalediffusion]=MVCM read2(respdata)

Input respdata: a n× L0 ×m matrix of response variables.

Output Ydesign: a n× L0×m matrix.

scalediffusion: a m× 1 vector of scales for each properties.

Remark this function will save some time when just need to normalize response matrix.

MVCM lpks wob

Function [mh, GCVs, vh]=MVCM lpks wob(NoSetup, arclength, Xdesign, Ydesign, kstr)

Input NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number
of grid points, p− 1 is the number of covariates and m is the number of features.

arclength: a L0 × 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

Ydesign: a n× L0×m matrix.

kstr: kernel function. The default one is exp(−.5t2).

Output mh: a 1×m vector of optimal bandwidth.

GCVs: a nh×m matrix of GCVs, where nh is the number of candidate bandwidth for
each property.

vh: a 1× nh vector of candidate bandwidth.

Remark you need to use function MVCM read to preprocess the data.
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MVCM lpks wb1

Function [efitBetas, efitBetas1, InvSigmats, efitYdesign]=MVCM lpks wb1(NoSetup, ar-
clength, Xdesign, Ydesign, kstr)

Input NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number
of grid points, p− 1 is the number of covariates and m is the number of features.

arclength: a L0 × 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

Ydesign: a n× L0×m matrix.

mh: a 1×m vector of optimal bandwidth.

kstr: kernel function. The default one is exp(−.5t2).

Output efitBetas: a p× L0 ×m matrix of estimated functional coefficients.

efitBetas1: a 2p×L0 ×m matrix of estimated functional coefficients and their first
derivatives next to them.

InvSigmats: a 2p× 2p× L0 ×m matrix; see (Zhu et al., 2010a).

efitYdesign: a n× L0 ×m matrix of fitted responses.

Remark you need to use function MVCM read to preprocess the data and function MVCM lpks wob
to obtain the optimal bandwidth, respectively.

MVCM sif

Function [ResEtas, efitEtas, eSigEta]=MVCM sif(arclength, ResYdesign, kstr)

Input arclength: a L0× 1 column vector of the arclength from one end to the other end.

efitYdesign: a n× L0 ×m matrix of fitted responses.

kstr: kernel function. The default one is exp(−.5t2).

Output ResEtas: a n× L0 ×m matrix of difference between ResYdesign and fitted eta .

efitEtas: a n× L0 ×m matrix of estimated etas.

eSigEta: a m×m× L0 × L0 matrix of covariance matrix of etas.

Remark you need to run MVCM wb1 and MVCM read before use this function.

MVCM sif2

Function [ResEtas, efitEtas, eSigEta]=MVCM sif(arclength, ResYdesign, kstr)

Input NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number
of grid points, p− 1 is the number of covariates and m is the number of features.
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efitYdesign: a n× L0 ×m matrix of fitted responses.

kstr: kernel function. The default one is exp(−.5t2).

Output ResEtas: a n× L0 ×m matrix of difference between ResYdesign and fitted eta .

efitEtas: a n× L0 ×m matrix of estimated etas.

eSigEta: a m×m× L0 × L0 matrix of covariance matrix of etas. Only the diagonal
covariance matrices are true and nonzero.

Remark you need to run MVCM wb1 and MVCM read before use this function. This func-
tion will save a lot time comparing with MVCM sif as it only calculates the matrices
when the grid points are equal, namely, Ση(s, s), which is used in the later resampling
procedure.

MVCM eigen

Function [mSigEtaEig, mSigEta]=MVCM eigen(efitEtas)

Input efitEtas: a n× L0 ×m matrix of estimated etas.

Output mSigEta: a L0 × L0 ×m matrix of covariance matrix of etas for each individual
measures

mSigEtaEig: a L0× (L0 + 1)×m matrix of eigenvalues and eigenvectors of individual
covariance matrix of etas. The first column is eigenvalues and the rest are the
respective eigenvectors.

Remark you need to either run MVCM sif or MVCM sif2 before use this function.

MVCM ecm

Function [eSigE]=MVCM ecm(arclength, ResEtas, kstr)

Input arclength: a L0× 1 column vector of the arclength from one end to the other end.

ResEtas: a n× L0 ×m matrix of difference between ResYdesign and fitted eta.

kstr: kernel function. The default one is exp(−.5t2).

Output eSigE: a L0 ×m×m matrix of the covariance of ε.

Remark you need to either run MVCM sif or MVCM sif2 before use this function.
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MVCM lpks wb2

Function [efitBetas3] = MVCM lpks wb2(NoSetup, arclength, Xdesign,Y design, mh, kstr)

Input NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number
of grid points, p− 1 is the number of covariates and m is the number of features.

arclength: a L0 × 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

Ydesign: a n× L0×m matrix.

mh: a 1×m vector of optimal bandwidth.

kstr: kernel function. The default one is exp(−.5t2).

Output efitBetas1: a 4p × L0 ×m matrix of estimated functional coefficients and their
up to third derivatives next to them.

Remark you need to use function MVCM read to preprocess the data and function MVCM lpks wob
to obtain the optimal bandwidth, respectively. This function is used mainly to estimate
the bias of the estimation B(s); see function MVCM bias.

MVCM bias

Function [ebiasBetas] = MVCM bias(NoSetup, arclength, Xdesign, Ydesign, InvSigmats,
mh, kstr)

Input NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number
of grid points, p− 1 is the number of covariates and m is the number of features.

arclength: a L0 × 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

Ydesign: a n× L0×m matrix.

InvSigmats: a 2p× 2p× L0 ×m matrix; see (Zhu et al., 2010a).

mh: a 1×m vector of optimal bandwidth.

kstr: kernel function. The default one is exp(−.5t2).

Output ebiasBetas: a p× L0 ×m matrix of the bias of the estimated betas.

Remark you need to run functions MVCM read, MVCM lpks wob, MVCM lpks wb1 and
and MVCM sif before use this function. You also need function MVCM lpks wb2 in
this function.
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MVCM ht stat

Function [Gstat, Lstat]=MVCM ht stat(NoSetup, arclength, Xdesign, efitBetas, eSigEta,
Cdesign, B0vector, ebiasBetas)

Input NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number
of grid points, p− 1 is the number of covariates and m is the number of features.

arclength: a L0 × 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

efitBetas: a p× L0 ×m matrix of estimated functional coefficients.

eSigEta: a m×m× L0 × L0 matrix of covariance matrix of etas.

efitBetas1: a p× L0 ×m matrix of the bias of the estimated betas.

Cdesign: a r ×mp matrix for characterizing the r linear constraints among mp pa-
rameters.

B0vector: a r × L0 vector for hypothesis testing.

ebiasBetas: a p× L0 ×m matrix of the bias of the estimated betas.

Output Gstat: a global test statistics.

Lstat: a L0 × 1 column vector of test statistics for each location.

Remark you need to run functions MVCM read, MVCM lpks wob, MVCM lpks wb1 and
and MVCM sif before use this function. You also need function MVCM lpks wb2 in
this function. The global and local tets statistics here are bias adjusted.

MVCM grs

Function [SimYdesign]=MVCM grs(efitBetas, efitEtas, ResEtas, Xdesign)

Input efitBetas: a p× L0 ×m matrix of estimated functional coefficients.

Xdesign: a n× p normalized design matrix.

efitEtas: a n× L0 ×m matrix of estimated etas.

ResEtas: a n× L0 ×m matrix of difference between ResYdesign and fitted eta .

Output SimYdesign: a n× L0×m simulated response matrix.

Remark you need to run functions MVCM read, MVCM lpks wob, MVCM lpks wb1 and
and MVCM sif before use this function.
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MVCM bstrp stat

Function [Gstat, Lstat]=MVCM bstrp stat(arclength, Xdesign, efitBetas, eSigEta, Cde-
sign,
B0vector)

Input arclength: a L0× 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

efitBetas: a p× L0 ×m matrix of estimated functional coefficients.

eSigEta: a m×m× L0 × L0 matrix of covariance matrix of etas.

Cdesign: a r ×mp matrix for characterizing the r linear constraints among mp pa-
rameters.

B0vector: a r × L0 vector for hypothesis testing.

Output Gstat: a global test statistics.

Lstat: a L0 × 1 column vector of test statistics for each location.

Remark you need to run functions MVCM read, MVCM lpks wob, MVCM lpks wb1 and
and MVCM sif before use this function. The global and local tets statistics here are
without bias adjusted.

MVCM bstrp pvalue3

Function [Gpval]=MVCM bstrp pvalue3(NoSetup, arclength, Xdesign, Ydesign, efitBetas1,
InvSigmats, mh, Cdesign, B0vector, Gstat, GG, kstr)

Input NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number
of grid points, p− 1 is the number of covariates and m is the number of features.

arclength: a L0 × 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

Ydesign: a n× L0×m matrix.

efitBetas1: a 2p×L0 ×m matrix of estimated functional coefficients and their first
derivatives next to them.

InvSigmats: a 2p× 2p× L0 ×m matrix; see (Zhu et al., 2010a).

mh: a 1×m vector of optimal bandwidth.

Cdesign: a r ×mp matrix for characterizing the r linear constraints among mp pa-
rameters.

B0vector: a r × L0 vector for hypothesis testing.

Gstat: a global test statistics.

GG: a resampling number.
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kstr: kernel function. The default one is exp(−.5t2).

Output Gpval: a p-value for the global test statistics based on a resampling method.

Remark you need to run functions MVCM read, MVCM lpks wob, MVCM lpks wb1, MVCM sif,
MVCM lpks wb2, MVCM bias, MVCM ht stat before use this function. In this func-
tion, we need functions MVCM bstrp stat and MVCM sif2.

MVCM cb Gval

Function [Gvalue]=MVCM cb Gval(arclength, Xdesign, ResYdesign, InvSigmats, mh, GG,
kstr)

Input arclength: a L0× 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

ResYdesign: a n×L0×mmatrix of difference between fiber bundle diffusion properties
and fitted fiber bundle diffusion properties .

InvSigmats: a 2p× 2p× L0 ×m matrix; see (Zhu et al., 2010a).

mh: a 1×m vector of optimal bandwidth.

GG: a resampling number.

kstr: kernel function. The default one is exp(−.5t2).

Output Gvalue: a m × p × L0 × GG matrix of simulated G value matrix based on a
resampling method.

Remark you need to run functions MVCM read, MVCM lpks wob, and MVCM lpks wb1
before use this function.

MVCM CBands

Function [CBands] = MVCM CBands(n, alpha, Gvalue, efitBetas, ebiasBetas)

Input n: number of subjects.

alpha: a preselected significance level.

Gvalue: a m×p×L0×GG matrix of simulated G value matrix based on a resampling
method.

efitBetas: a p× L0 ×m matrix of estimated functional coefficients.

ebiasBetas: a p× L0 ×m matrix of the bias of the estimated betas.

Output CBands: a 2p× L0 ×m matrix of estimated confidence bands.

Remark you need to run functions MVCM read, MVCM lpks wob, MVCM lpks wb1 and
MVCM cb Gval before use this function.
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3 Examples and Results

The example we illustrate here is using the two diffusion properties including factional
anistropy (FA), mean diffusivity (MD) along the genu tract (Fig. 2). FA and MD, re-
spectively, measure the inhomogeneous extent of local barriers to water diffusion and the
averaged magnitude of local water diffusion. In the example n = 23, L0 = 22, p = 4 and
m = 2. There are two groups: one is the Flu and another is Ket-Control. In this analysis,
One of our interests is to know whether there is a difference between these two groups. Also
we try to understand the difference between the genders, male and female, and assess the
developement of diffusion properties with time. For more examples on simulation and real
data, see (Zhu et al., 2010a).

Figure 2: FA and MD along the genu tract

1. Multivariate Varying Coefficient Model

The FADTTS model we considered is

(FAi(sj),MDi(sj))
T = (xTi B1(sj),x

T
i B2(sj))

T + ηi(sj) + εi(sj),

xTi B1(s) = β11(s) + β12(s)×Gi + β13(s)× Flui + β14(s)× Agei,

xTi B2(s) = β21(s) + β22(s)×Gi + β23(s)× Flui + β24(s)× Agei, (13)

where Gi, Flui and Agei, respectively, denote gender, Flu (0 for Flu and 1 for Ket-control),
and the gestational age at the scan time of the i-th infant, ηi(s) = (ηi1(s), ηi2(s))

T is a
Gaussian process with zero mean and covariance matrix Ση(s, t) and εi(s) = (εi1(s), εi2(s))

T

is a Gaussian random vector with zero mean and covariance matrix Σε(s, s)1(s = t). As
stated, i = 1, 2, · · · , 23 and j = 1, 2, · · · , 22.
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Figure 3: estimated functional coefficients for FA and MD along the genu tract

2. Weighted Least Squares Estimation

There are three data sets we need to import, namely, tractdata, designdata, diffusionFiles.
The data set tractdata contains (x, y, z) coordinates of all locations on a given fiber tract.
The data set should start from one end to the other end. tractData is a L0×3 matrix, where
L0 = 22 denotes the number of locations. 3 denotes the three coordinates. The following
shows the first 5 rows of tractData,
-11 0 0

-10 0 0

-9 0 0

-8 0 0

-7 0 0

· · ·
the data set designdata contains covariates of interest. We always need to 1include the in-
tercept in the first column. designData is a n×p matrix, where n = 23 denotes the number
of subjects and p = 4 denotes the number of covariates, as we have intercept, gender, age
and gage. Each covariate is listed in one column. The following shows the first 5 rows, where
the columns are, respectively, intercept, gender, flu and age.
1 1 0 375

1 0 0 381

1 1 0 378

1 1 1 366

1 1 1 377

· · ·
The data set diffusionFiles is a m(= 2)×1 cell containing the names of all fiber diffusion
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properties files. Each fiber bundle diffusion properties should contain a L0(= 22)× n(= 23)
matrix. Rows correspond to the columns in tractData, while columns correspond to the
columns in designData. In particular, we use
diffusionFiles=cell(2,1);

to define the cell structure. We then specify the first cell diffusionFiles{1} as FA values
and the second diffusionFiles{2} as MD values. Both are n×L0 matrices. The following
are the first 5 rows of diffusionFiles{1}.
0.3286 0.2782 0.2172 0.2095 0.2939 0.1450 · · ·
0.2342 0.2104 0.2800 0.2621 0.2256 0.2578 · · ·
0.2954 0.2066 0.2514 0.3040 0.2378 0.2897 · · ·
0.3411 0.2922 0.3336 0.2956 0.2952 0.3268 · · ·
0.3609 0.2759 0.2904 0.3043 0.3684 0.3482 · · ·
· · ·
After load covariates, response and arc length data, we use MVCM read to transfer data into

Figure 4: estimated first 12 relative eigenvalues and first 3 eigenfunctions for FA and MD
along the genu tract

the format we want.
[NoSetup, arclength, Xdesign, Ydesign]

=MVCM read(tractdata, designdata, diffusionFiles, nofeatures);

We use function MVCM lpks wob to find the optimal bandwidth.
[mh]

=MVCM lpks wob(NoSetup, arclength, Xdesign, Ydesign);

mh=1.3978 3.0318

After we got the optimal bandwidth, we are able to estimate the coefficients using function
MVCM lpks wb1.
[efitBetas, efitBetas1, InvSigmats, efitYdesign]

=MVCM lpks wb1(NoSetup, arclength, Xdesign, Ydesign, mh);
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The estimated coefficients are shown in Fig. 3.

3. Functional Principal Component Analysis

Next we find the residual of response.
ResYdesign=Ydesign-efitYdesign;

Then we use function MVCM sif to estimate η and MVCM eigen to estimate the eigenvalues
and eigenfunctions of Σ̂η,kk.
[ResEtas, efitEtas, eSigEta]

=MVCM sif(arclength, ResYdesign);

[mSigEtaEig, mSigEta]

=MVCM eigen(efitEtas);

Figure 5: − log10 local p-values for testing Gender, Flu and Age effects for FA and MD
together along the genu tract

Fig. 4 shows the estimated first 12 relative eigenvalues and first 3 eigenfunctions for FA
and MD along the genu tract. The relative eigenvalues of Σ̂η,kk are defined as the ratios

of the eigenvalues of Σ̂η,kk over their sum. To estimate the covariance matrix of ε, we use
function MVCM ecm.
[eSigE]

=MVCM ecm(arclength, ResEtas);
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Figure 6: 95% confidence bands of Gender, Flu and Age effects for FA and MD together
along the genu tract: red dashed lines are confidence bands; blue lines are estimated B(s);
the first row is for FA and the second row is for MD.

4. Hypothesis Test

Before we test the significance of the covariates, we first need to estimate the bias of B̂(s)
using function MVCM bias.
[ebiasBetas]=

MVCM bias(NoSetup, arclength, Xdesign,Ydesign, InvSigmats, mh);

To use hypothesis test, we need to specify the matrix for the coefficient functions and their
corresponding values under the null hypothesis. For example, to test the significance of over
all effect of Age, the matrix C and b0(s) are, respectively,

C =

(
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

)
and b0(s) ≡

(
0
0

)
for all s.

Using function MVCM ht stat, we found the global test statistics Sn for testing the effects of
gender, flu and age are, respectively, 35.3904, 33.4591, and 332.7554.
[Gstat, Lstat]=

MVCM ht stat(NoSetup, arclength, Xdesign, efitBetas, eSigEta, Cdesign,

B0vector, ebiasBetas);

The corresponding p-values are 0.658, 0.617, and 0.007 calculated by function MVCM bstrp pvalue3
based on a resampling method with G = 1000 replication.
[Gpval]=

MVCM bstrp pvalue3(NoSetup, arclength, Xdesign, Ydesign, efitBetas1,
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InvSigmats, mh, Cdesign, B0vector, Gstat, GG);

We can also find the local p-values by
Lpvals=1-chi2cdf(Lstats,m);

Fig. 5 shows the − log10 local p-values for testing Gender, Flu and Age effects for FA and
MD together along the genu tract.

5. Confidence Bands

Let α = 0.05 (you chose other values if desired), we use function MVCM cb Gval to estimate
Ckl based on a resampling method.
[Gvalue]=

MVCM cb Gval(arclength, Xdesign, ResYdesign, InvSigmats, mh, GG);

The the simultaneous confidence bands were found by function MVCM CBands.
[CBands]=

MVCM CBands(n, alpha, Gvalue, efitBetas, ebiasBetas);

Fig. 6 shows 95% confidence bands of Gender, Age and Gage effects for FA and MD together
along the genu tract (red dashed lines).

Figure 7: FRATS GUI
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4 FADTTS: graphical user interface (GUI)

To make it easily accessible, we developed a Graphical User Interface (GUI) to pack the
code. As shown in Figure 7, there are 4 button groups, which are supposed to be executed
in order. The 4 groups are s Load Raw Data, Basic Plots, Load Test Data, and P-value
Plots. There are 3 raw data sets, namely, tract data, design data and diffusion data. The
test data sets include test design matrix and null hypothesis vector. All data sets must be in
.mat. The package includes a sample matlab code pre_address_data.m on how to set up
data. After loading all raw data, GUI will transfer the raw data, estimate the coefficients,
do spectral decomposition and estimate confidence bands. Then you can plot the raw tract
data, the coefficient functions, spectral decomposition and confidence bands by pushing the
corresponding buttons. If you want to do a test, you need to load the test design data. There
are two types of test. One is to test individually and the other one is test all the diffusion
properties together. Once you loaded the test design data, GUI will display what test type
you requested. The test calculation may take a while. After matlab finishes the computation,
GUI will report the global test statistics and p-values. You also have the option to plot the
local p-values.
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