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Abstract

The human brain is a complex system whose topological organization can be represented using connectomics. Recent
studies have shown that human connectomes can be constructed using various neuroimaging technologies and further
characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological
architectures of human brain networks in healthy populations and explore the changes throughout normal development
and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes
for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we
developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as
ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be
loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color
and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings
panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in
multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more
detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration
video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner,
and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).
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Introduction

The human brain is naturally organized into a complex system

whose topological descriptions have been represented as a

structural connectome [1] of interconnected cortico-cortical

axonal pathways and a functional connectome [2] of synchronized

interregional neural activity. Mapping the human brain con-

nectome and uncovering its underlying organizational principles

are fundamentally important in neuroanatomy, neurodevelop-

ment, cognitive neuroscience and neuropsychology. Recent studies

have suggested that the human brain connectome can be mapped

using neuroimaging data and further characterized through

sophisticated analytic strategies based on graph theory [3–5].

Graph theoretical approaches model the human brain as

collectives of nodes linked by edges, of which the nodes typically

represent brain regions or voxels in neuroimaging data, while the

edges are often estimated by gray matter morphological correla-

tion [6,7] or white matter fiber connections [8,9] in structural data

and temporal correlations [10–12] in functional data. Once the

brain nodes and edges are extracted from the neuroimaging data,

graph theoretical algorithms are further applied to measure the

topological properties of the constructed networks. The applica-

tion of these algorithms revealed many non-trivial topological

properties of brain networks, such as small-worldness [13],

modularity [14,15], highly connected hubs [8,16] and ‘rich-club’

configurations [17,18]. To date, graph theoretical methods have

been used to examine the relationships between human brain

network properties and population attributes, such as aging [19–

24], development [25–34], gender [19,34–37], intelligence

[34,38,39] and genetic [40–43]. Moreover, these graph-based

network analysis methods have been applied to individuals with a

variety of neuropsychiatric disorders [44–47], including Alzhei-

mer’s disease (AD) [48–50], mild cognitive impairment (MCI) [51–

53], schizophrenia [54–56] and epilepsy [57,58].

Given the abstract nature of graph theoretical approaches and

the huge complexity of brain networks, it is important to develop

easy-to-use and efficient toolkits for graph-based network con-

struction, analysis and/or visualization. Recently, several freely

available toolkits for extracting brain network topological proper-

ties have emerged, including Brain Connectivity Toolbox (BCT)

[59], eConnectome [60], Graph-Analysis Toolbox (GAT) [61],

Pipeline for Analyzing braiN Diffusion imAges (PANDA) [62],

NetworkX (http://networkx.lanl.gov/index.html), Brainwaver

(http://cran.r-project.org/web/packages/brainwaver/index.

html) and Graph-theoRETical Network Analysis toolkit

(GRETNA, http://www.nitrc.org/projects/gretna/), which have

greatly assisted with the investigation of the brain connectome.

However, toolkits for visualizing the brain connectome as nodes

and edges are still lacking.
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Here, we developed a MATLAB toolbox, called BrainNet

Viewer, with a Graphical User Interface (GUI), to provide a

flexible and rapid visualization platform and generate figures for

brain connectome studies in a user-friendly and intuitive manner.

In this toolbox, the brain surface, node, edge and volume files can

be defined as input containing fundamental information about

brain networks, and we have designed an easy-to-use optional

panel to modify the details of the network display. BrainNet

Viewer automatically generates the figures as the user requires,

and these figures can be saved as several common image formats

for further use. Moreover, interaction functions are available to

facilitate the demonstration of more detailed information.

Materials and Methods

Toolbox Development
Developing environment. BrainNet Viewer was developed

using MATLAB (The MathWorks Inc., Natick, MA, US) as a

programming language, with a user-friendly GUI (Figure 1), under

a 64-bit Windows (Microsoft Corp., Redmond, WA, US)

environment. The toolbox includes functions of Statistical

Parametric Mapping 8 (SPM, http://www.fil.ion.ucl.ac.uk/spm/

) for loading NIfTI and Analyze format files (*.nii; *.img). This

toolbox has been successfully tested under a variety of operating

systems with MATLAB installed, including Windows (XP, 7, 8

and Server versions), Linux (Ubuntu and CentOS) and Mac OS in

both 32- and 64-bit versions.

Visualization procedure. BrainNet Viewer was designed to

visualize brain connectomes using the following procedure. First,

users upload a combination of files containing connectome

information, such as a brain surface, node, edge and volume files.

Then, an easy-to-use options panel appears, allowing the

adjustment of figure configuration parameters, such as output

layout, background color, surface transparency, node color and

size, edge color and size and image resolution. Subsequently,

BrainNet Viewer draws the brain surface, nodes and edges

(depending on the files loaded) in sequence and shows the brain

network in multiple views, as required by the user. Finally, the

figures are exported to common image file formats for further use

(see Figure 2 for a flowchart).

File definition. We defined four types of import files for

BrainNet Viewer, namely, brain surface, node, edge and volume

files. 1) Brain surface file. The brain surface file is an ASCII text

file, with the suffix ‘nv’, containing four fields: the number of

vertices, the coordinates of each vertex, the number of triangle

faces and the index of the vertices comprising the triangles.

Currently, the ‘.pial’ file of hemisphere mesh, generated using

FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) [63], and the

‘.mesh’ files, generated using BrainVISA (http://brainvisa.info/)

[64], are supported for direct loading and visualization. 2) Node

file. The node file is an ASCII text file with the suffix ‘node’. Nodal

information is arranged in 6 columns in the node file: columns 1–3

represent the x, y and z coordinates, respectively, of the nodes;

column 4 represents the index for node color; column 5 represents

the node size; and column 6 represents the node label. A ‘2’

symbol (no ‘’) in column 6 indicates no label for the corresponding

node. The values for this file are easily arranged depending on the

aspects of the network shown. For example, the modular

information for the nodes can be assigned to column 4 to use

color to distinguish nodes belonging to different modules. Column

5 could be set as nodal degree, centrality and T-value to

emphasize nodal differences according to size. 3) Edge file. The

brain edge file is an ASCII text file with the suffix ‘edge’,

representing an association (e.g., correlations) matrix among the

nodes, which can be weighted or binarized, and therefore, the size

of the matrix must correspond to the number of nodes. Both the

node and edge files can be generated or edited using text editors or

spreadsheet software. 4) Volume file. BrainNet Viewer facilitates

the mapping of volume data to the brain surface, which can be a

functional connectivity map, gray matter density map, statistical

parametric map or a brain atlas. The volume file should be in the

NIfTI or Analyze format, and either a single or paired nii files are

acceptable. A text file containing an n61 vector is also acceptable,

in which n equals the vertex number of the brain surface (e.g.,

81,924 vertices in the International Consortium for Brain

Mapping (ICBM) whole brain surface).

In BrainNet Viewer, several brain surface templates and files of

example brain networks are provided. 1) The brain surface

templates are primarily generated from two commonly used

templates, including Ch2 (with/without cerebellum and separated

hemispheres) and ICBM152 (smoothed/unsmoothed, MNI/Ta-

laraich and separated hemispheres), which can be found in the

folder ‘.\Data\SurfTemplate’. 2) The brain network files,

including node and edge files, are generated from various brain

parcellations, such as Automated Anatomical Labeling (AAL, 90

regions, only cerebrum) [65], Brodmann areas (82 regions) [66],

Harvard-Oxford Atlas (HOA, 112 regions) [67], regions of interest

(ROIs) defined by Dosenbach et al.(160 ROIs) [68], ROIs defined

by Fair et al. (34 ROIs) [26] and LONI Probabilistic Brain Atlas

(40 regions) [69], which are stored in the folder ‘.\Data\Exam-

pleFiles’. Notably, the coordinates in these files are located in the

MNI space, unless otherwise noted. Moreover, users are encour-

aged to create custom files of brain networks for visualizing specific

characteristics of the brain connectome. Specifically, the custom-

ized brain surface can be extracted from anatomical data using

surface reconstruction software, such as the FreeSurfer and

BrainVISA. Subsequently, the number of vertices and triangle

faces, vertex coordinates, and the index of the vertices in triangles

of the resultant surface are stored as ASCII files with the suffix

‘.nv’ to generate a customized brain surface template. The

network characteristics can be saved as ASCII files with either

the ‘.node’ or ‘.edge’ suffix using text editor or Matlab commands,

according to the previously described file rule definitions to

generate customized network files.

Core codes. BrainNet Viewer manages brain network

visualization in three ways: displaying graph theoretical networks

as ball-and-stick models; performing volume-to-surface mapping;

and constructing ROI clusters from volume files. Here, we

introduce the core graphic functions in MATLAB that BrainNet

Viewer uses for the visualization procedure.

The ball-and-stick model of the graph theoretical network

includes three elements: brain surface, nodes and edges. 1) For the

brain surface, once the vertex coordinates and triangles are

loaded, the following function is used to draw the surface in a

figure:

surf_h = trisurf(tri, x, y, z);

where surf_h is the handle of the object, tri represents the index

of the vertex comprising the triangles, and x, y and z are the

coordinates of the vertex on the surface. 2) The network nodes are

represented as spheres. The sphere in a specific position (x, y, and

z) is generated using the following codes:

[X, Y, Z] = sphere(n);

X = X * r+x; Y = Y * r+y; Z = Z * r +z;

node_h = mesh(X, Y, Z);

where X, Y and Z represent vertex coordinates of a unit sphere,

n is the number of faces (n-by-n) on this sphere (in BrainNet

Viewer, n represents the graph detail in the option panels, where

100, 50 and 20 represent high, moderate and low details,

BrainNet Viewer: Visualization for Connectomics
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respectively), r is the size of the node, and node_h is the handle of

the node. 3) Similar to nodes, cylinders are drawn in BrainNet

Viewer to represent network edges. The cylinders are first

generated and subsequently rotated and moved to the appropriate

position in the following manner:

theta = (0:n)/n * 2 * pi; t = ones(100,1) * t;

X = t * cos(theta); Y = t * sin(theta); Z = (0:100)’/(10021) *

ones(1,n +1) * length;

line_h = mesh(X, Y, Z);

rotate(line_h, axis_rot, angle_X1X2, [0 0 0]);

where theta is the radian of sampling points on a circle, n is the

number of sampling points (similar to the node sampling detail, 20,

10 and 5 represent high, moderate and low details, respectively), t

is the radius of the cylinder, X, Y and Z represent vertex

coordinates on the cylinder, length is the distance between the two

nodes connected by this edge, line_h is the handle of this edge, and

axis_rot and angle_X1X2 are the vector cross product and the

included angle between unit vector on the z-axis and the vector of

the two nodes connected by this edge, respectively.

The procedure for volume-to-surface mapping first transfers the

vertex coordinates on the brain surface to the matrix coordinates

in the image file using different mapping algorithms and then

assigns vertices with different values. Eight mapping algorithms are

provided to determine the vertex values in BrainNet Viewer:

‘Nearest Voxel’, assign the vertex with the value of the voxel in

volume that is nearest to it, suitable to display an atlas or mask;

‘Average Vertex’, assign the vertex with the value of the voxel in

volume that is nearest to it, and then average the vertex across its

neighbors (high time consumption); ‘Average Voxel’, assign the

vertex with average value of the voxel and its neighbors in volume

that is nearest to it; ‘Gaussian’, the volume first employs

convolutions with a Gaussian kernel and then assigns the vertex

with the value of the voxel in volume that is nearest to it;

‘Interpolated’, the coordinate of the vertex is determined in the

volume space, and a trilinear interpolate method is then used

across its neighbors to calculate the value; ‘Maximum Voxel’,

assign the vertex with the maximum value of the voxel and its

neighbors in volume that is nearest to it; ‘Minimum Voxel’, assign

the vertex with the minimum value of the voxel and its neighbors

in volume that is nearest to it; ‘Extremum Voxel’, assign the vertex

with the extremum value of the voxel and its neighbors in volume

that is nearest to it. The mapping code is similar to the surface

drawing, which is represented as:

surfmap_h = trisurf(tri, x, y, z, v);

where surfmap_h is the handle of the object, tri represents the

index of the vertices comprising the triangles, x, y and z are the

coordinates of the vertex on the surface, and v represents the value

of each vertex on the surface.

Figure 1. The main window of BrainNet Viewer. BrainNet Viewer is free software available on the NITRC website (www.nitrc.org/projects/bnv/),
which runs with MATLAB under Windows, Linux and Mac OS, with either 32- or 64-bit systems. The latest version is 1.41, released September 18, 2012.
The main window includes the menu bar, toolbar and contact information.
doi:10.1371/journal.pone.0068910.g001
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BrainNet Viewer also provides functions to construct ROI

clusters from volume files. The voxels within the same cluster are

labeled with the same index number and are fully connected.

Then, the toolbox identifies and constructs the cluster from

volume to surface using the following codes:

fv = isosurface(vol);

roi_h = trisurf(fv.faces,fv.vertices(:,1),fv.vertices(:,2),fv.verti-

ces(:,3));

where fv represents the surface information, containing vertex

coordinates (fv.vertices) and triangle indices (fv.faces), constructed

from ROI clusters; vol is the three-dimensional matrix containing

ROI clusters; and roi_h is the handle of the ROI object. After these

objects are created, several functions controlling object properties

are used to adjust the appearance of these elements in the brain

network, including EdgeColor, FaceAlpha, material, shading, lighting and

camlight.

Functional Brain Network Visualization on Experimental
Data

Subjects. To demonstrate the visualization effects of this

toolbox on real data, we analyzed a published resting-state fMRI

dataset. The dataset was downloaded from the 1000 Functional

Connectomes Project (www.nitrc.org/projects/fcon_1000/),

which is a worldwide multi-site project with fMRI data sharing

for the imaging community. The resting-state images were

acquired from 198 healthy right-handed volunteers (males, 76;

females, 122; age, 18 - 26 years) at the scanning site of Beijing

Normal University. The data for one subject were removed

because of an orientation error during scanning. Each participant

provided written informed consent before initiating scanning. The

study was approved through the Institutional Review Board of the

Beijing Normal University Imaging Center for Brain Research.
Image acquisition. The resting-state fMRI data acquisitions

were performed on a Siemens 3T scanner. For each participant,

functional images were scanned using the following parameters:

repetition time = 2000 ms, echo time = 30 ms, in-plane resolu-

Figure 2. A flowchart for visualization of BrainNet Viewer. First, the combination of the files containing connectome information is loaded.
Then, the configuration of the graph is adjusted in an easy-to-use option panel. Next, BrainNet Viewer draws the brain surface, nodes and edges in
sequence. Finally, the figure is saved in a common image format for further use.
doi:10.1371/journal.pone.0068910.g002
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tion = 3.125 mm63.125 mm, slice thickness = 3 mm, number of

slices = 33, section gap = 0.6 mm, flip angle = 90u, field of

view = 200 mm6200 mm and time points = 225. The participants

were instructed to remain awake with their eyes closed during the

scanning.

Image pre-processing. The image pre-processing was con-

ducted using DPARSF [70] and SPM5 (www.fil.ion.ucl.ac.uk/

spm/). The first 10 volumes of each participant were removed to

for the adaptation of the participants to the scanning noise. The

following pre-processing steps included slice timing, realignment,

spatial normalizing to the standard EPI template in MNI space

and resampling to an isotropic 3-mm voxel size, spatially

smoothing with a 4-mm FWHM kernel, detrending and band-

pass filtering (0.01 - 0.08 Hz). Furthermore, we regressed out the

white matter (WM), cerebrospinal fluid (CSF), global signals, and

head-motion profiles to reduce the effect of these nuisance signals.

Network construction. We constructed the functional brain

networks for each individual using two methods, differentiated

according to the node definition, as either a region- or voxel-based

network. 1) The region-based networks were constructed following

the following manner. First, the AAL atlas was used to parcellate

the entire brain into 90 regions (regions in cerebellum were

excluded), which were considered as nodes in the network. Then,

the mean time courses were extracted from each region and used

to obtain a 90690 correlation matrix of Pearson’s correlation

coefficients between all possible connections of node pairs. 2) The

voxel-based networks were constructed by directly considering

GM voxels as nodes. The Pearson’s correlation coefficients were

then computed between the time courses of all pairs of voxels to

generate a ,50,000650,000 correlation matrix. All correlation

matrices were transferred into z-score matrices using Fisher’s r-to-z

transformation to improve normality.

Network analysis. We analyzed the region-based networks

at the group level. First, we performed one sample t-tests for all

possible connections across all subjects, and the t-values were

considered as the strength of connections. Then, a Bonferroni-

corrected significance level of P,0.05 was used to remove the

non-significant connections and obtain a group-level weighted

functional matrix (network). Notably, the negative correlations

were excluded because of biological ambiguity. Subsequently, a

modular detection algorithm [14] was applied to the resultant

weighted network to identify functional modules. Finally, we

calculated the functional connectivity strength (FCS; i.e., nodal

strength) for each node by summing the connections (t-score)

linked, and the resultant FCS values were further normalized to

standard Z-scores (the minus mean and divided by the standard

deviation (SD)). The nodes with a Z-score higher than 1 were

identified as network hubs.

For the voxel-based network analysis, the FCS in the brain

functional network of each subject was calculated. The FCS of a

voxel was computed as the sum of the connections (z-score) between

the given voxel and all other voxels. We conservatively restricted the

analysis to positive correlations above a threshold of r = 0.2. The

FCS maps were averaged across subjects, and the resultant mean

FCS map was further normalized (the minus mean and divided by

the SD) to exhibit the hub distribution of brain functional networks

on a group level. Given a high computational load, we did not

analyze the other network properties, such as modularity.

Results

Toolbox Development
Download and installation. The BrainNet Viewer package

is available as a free download from the NITRC website

(www.nitrc.org/projects/bnv/), and this software is also

listed among the SPM extensions (www.fil.ion.ucl.ac.uk/spm/

ext/#BrainNetViewer). The BrainNet Viewer has been down-

loaded over 4,400 times from the NITRC website since it was

released on July 7, 2011. The installation of BrainNet Viewer is

similar to most MATLAB toolboxes. To run this package, open

MATLAB, add the BrainNet Viewer folder in the MATLAB

search path, and type ‘BrainNet’ in the command window of

MATLAB. In addition, a user-friendly manual is also available

within the package, providing a detailed guide for using BrainNet

Viewer.

Combinations of files. Although four types of input files are

defined for BrainNet Viewer, it is not necessary to load all files

types at one time. Instead, several combinations are acceptable,

and different combinations will generate different network

pictures. These combinations include 1) brain surface file only;

2) node file only; 3) brain surface and node files; 4) node and edge

files; 5) brain surface, node and edge files; 6) brain surface and

volume files for volume-to-surface mapping or ROI cluster

drawing; 7) brain surface, node and volume files; and 8) brain

surface, node, edge and volume files. Figure 3 shows the sample

images generated using these different combinations.

Option setting. We developed an option panel (Figure 4) in

BrainNet Viewer for adjusting the details of the figure intuitively

and easily. The option panel is divided into seven subpanels,

corresponding to different aspects of the figure, including layout,

global, surface, node, edge, volume and image, switched from the

list box on the left of the panel. In addition, the configuration in

this panel can be saved as a.mat file and recalled at next use or in a

command line (see Command line section). These panels are

briefly defined using the following description.

1) Layout panel. The layout panel (Figure 4A) is primarily

responsible for setting the output view of the brain model, in

which three types of views are provided: the single view shows

only one brain model in the figure (Figure 5A); the medium

view shows the lateral and medial sides of each hemisphere in

the figure (Figure 5B); and the full view shows all sides of the

brain surface. Depending on whether the inputted brain

surface can be divided into two hemispheres, the layout panel

shows brain models in two ways: if not dividable, the left,

right, dorsal, ventral, anterior and posterior sides are

displayed separately (Figure 5C); otherwise, the lateral and

medial sides of each hemisphere, the dorsal and ventral sides,

and the anterior and posterior sides of the entire brain are

shown (Figure 5D).

2) Global panel. The global panel (Figure 4B) provides several

different choices for the adjustment of the global figure,

particularly the display properties of these objects. Here, users

can change the color of the background, select material for the

objects (Figure 6A), change shading properties (Figure 6B),

select the lighting algorithm (Figure 6C), determine where the

light comes from (Figure 6D), change the rendering method

and set the graph details (e.g., set the number of sampling

points for nodes and edges).

3) Surface panel. The surface panel is available for adjusting the

properties of the brain surface. The surface panel is simple,

with only three options: the surface color, the opacity of the

surface and a switch for displaying the interaction of two

brains in one figure (Figure 7).

4) Nodal panel. The node panel (Figure 4C) is developed with

four zones to select node drawing, set labels, and adjust the

node size and color, respectively. All settings are dependent on

the nodal information in the nodal file. Users can draw all

BrainNet Viewer: Visualization for Connectomics
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nodes contained in the nodal file or select a subset by setting a

threshold for the value of column 4 or column 5 in the nodal

file. The nodes with higher values than the threshold will be

shown. The labels for these nodes can be added using the text

of column 6 in the node file, and the font type and size can be

selected. BrainNet Viewer provides three ways to adjust the

node size: automatically arrange the sizes of the nodes to a

proper range, according to nodal size in the node file; use the

original value in the node file; or set all nodes to an equal size

defined in the panel ignoring the size value in the file. Node

color can be adjusted in four ways: using the same color for all

nodes, ignoring the color index in the file; using a color map

to display the values of the nodes from low to high,

corresponding to the color index in the node file; assigning

distinct colors for nodes labeled with different modular indices

in column 4 of the node file; or binarizing the color to a given

threshold.

5) Edge panel. The edge panel (Figure 4D) is similar to the node

panel, with three parts that separately control edge extraction,

edge size and edge color. The edges are extracted from the

association matrix contained in the edge file by setting a

threshold of either a real value or sparsity (i.e., density or cost).

BrainNet Viewer can also extract edges using an absolute

value in the matrix or only edges that travel across two

hemispheres. In addition, the asymmetric matrix can be used

to draw edges with direction. There are three ways to adjust

the radius of edges: automatically arrange the sizes of edges to

a proper range according to the values in the association

matrix in the edge file; use the original value of the association

matrix; or set all edges to an equal radius defined in the panel,

ignoring the size values in the file. BrainNet Viewer provides

five ways to set edge color: adopt the same color for all edges;

use a color map to render edges by their values from low to

high; binarize the color by a given threshold for edge value;

binarize the color by a given threshold of Euclidean distance

between two nodes connected by this edge; or assign edge

color according to the colors of the nodes that it links.

6) Volume panel. The volume panel (Figure 4E) is set to control

the volume-to-surface mapping and draw ROI clusters with

brain surface. In the volume-to-surface mapping section, the

users perform mapping with positive, negative or both positive

and negative values in the volume file. We provide 24 types of

Figure 3. Pictures generated from different file combinations. The file combinations that BrainNet Viewer accepts include the following: (A)
brain surface only; (B) nodes only; (C) brain surface with nodes; (D) nodes and edges; (E) brain surface with nodes and edges; (F) brain surface and
volume files for volume-to-surface mapping; (G) brain surface, nodes and volume files for volume-to-surface mapping with nodes; (H) brain surface,
nodes, edges and volume files for volume-to-surface mapping with nodes and edges; and (I) brain surface and volume files for regions of interest
construction.
doi:10.1371/journal.pone.0068910.g003
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colorbars, including those most commonly used in research,

such as jet, hsv, hot, cold, winter and summer. In addition, a

custom colorbar can be generated using an n63 matrix. Eight

mapping algorithms are available, as described in the

Methods section, providing various effects for mapping. In

the ROI drawing section, users select the index number and

set the color of the ROI clusters that need to be reconstructed

and drawn.

7) Image panel. In the image panel (Figure 4F), the configura-

tions are related to the size and resolution of the output

images. The width and height of the image can be adjusted in

pixel dimensions for screen display or in real units (centimeter

or inch) for document use. The resolution of the output image

can also be modified in dots per inch (DPI).

User interaction. On the toolbar for the main window, some

interactional operation functions, including zoom in, zoom out,

move, rotate, data cursor, standard views and demonstration, were

developed. The zoom in and zoom out functions help to observe

the local or global status of the brain network. With ‘‘move’’ and

‘‘rotate’’ functions, users can move or change the view of the brain

model by dragging with the mouse. The data cursor function

displays the coordinates and value of the vertex on the surface, and

it also provides the corresponding brain region labels in terms of

AAL and Brodmann atlases (Figure 8). Shortcuts for three

standard views, sagittal, axial and coronal, are available to quickly

observe networks from different standard views. The demonstra-

tion function makes the brain model rotate clockwise until

terminated by the user.

Output. The brain connectome figures can be saved as

several common image formats, including TIFF, BMP, EPS, JPEG

and PNG. Moreover, BrainNet Viewer can save the brain

networks as videos, generating a 12 second long, 30 FPS,

7356534, AVI file, in which the brain network model rotates

clockwise in a circle at one degree per frame. Generating these

videos takes approximately 10 minutes (for an example, see www.

nitrc.org/docman/view.php/504/1023/Demo%20Video%20of%

20Brain%20Network%20(14M)).

Command line. Considering the growing requirements for

batched brain connectome figure mapping, such as dynamic brain

functional connectomes, the functionality to generate brain

network figures in the command line is provided. The function

is called according to the following command line:

BrainNet_MapCfg(filename1, filename2…);

where the variables of filenames can be any one of the brain

surface, node, edge and volume files. Once the files are loaded,

BrainNet Viewer draws the graphs with default configurations. For

instance, a command line of

BrainNet_MapCfg(‘BrainMesh_ICBM152.nv’, ‘Node_AAL90.node’);

will draw the brain surface of ‘BrainMesh_ICBM152.nv’ and

nodes in ‘Node_AAL90.node’ files using default settings.

A pre-saved configuration file can also be included in this

command line. For example, the command line.

Figure 4. The option panel and its subpanels in BrainNet Viewer. (A) The layout panel is adopted to set the output view of the brain model.
(B) The global panel is responsible for the adjustment of the display properties. (C) The node panel is developed to control node label, node size and
node color. (D) The edge panel is employed to control edge extraction, edge size and edge color. (E) The volume panel is used for setting volume-to-
surface mapping and regions of interest construction. (F) The image panel is applied for determining the parameters of the output image.
doi:10.1371/journal.pone.0068910.g004
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BrainNet_MapCfg(‘BrainMesh_ICBM152_smoothed.nv’, ‘OneSam-

ple_T.nii’, ‘Cfg.mat’);

would map the volume ‘OneSample_T.nii’ onto brain surface

‘BrainMesh_ICBM152_smoothed.nv’ using the settings pre-saved

in the ‘Cfg.mat’ file.

The command line also supports exporting the brain network

figure as image file. The names of the required image files are

added to the command line:

BrainNet_MapCfg(‘Node_AAL90.node’,’Edge_AAL90_Binary.edge’,

‘Net.jpg’);

Using this command, BrainNet Viewer draws a network in

which the node information is obtained from ‘Node_AAL90.node’

and the edge information is obtained from ‘Edge_AAL90_Binar-

y.edge’ using default settings, and this figure will be saved as a

JPEG image as ‘Net.jpg’. The order of these inputted filenames is

exchangeable, and the combinations of files are similar to the GUI

version.

Functional Brain Network Visualization on Experimental
Data

Biological findings and network visualization. Figure 9A

illustrates the region-based functional network as ball-and-stick

models. The coordinates of the nodes were centroids of the brain

regions in the AAL atlas. The sizes of the nodes were assigned with

a value for the nodal strength. Several hub regions were identified,

including the bilateral Rolandic operculum, bilateral superior

temporal gyrus, right supplementary motor area, right temporal

pole, right supramarginal gyrus, left medial orbital superior frontal

gyrus, bilateral insula and bilateral putamen, which were primarily

located at the association and subcortical regions. In addition, five

functional modules were identified in this network, and their nodes

were rendered using different colors: the module in green

comprises the regions in the default-mode network; the module

in cyan comprises the regions predominantly involved in the

attention and execution control; the module in red comprises the

region of the sensorimotor cortex; the module in blue comprises

the regions of the visual cortex; and the module in magenta

comprises the regions of the subcortical nuclei.

Figure 5. Different layouts of brain models. (A) The single view shows a single brain model in the figure as one of the three standard (sagittal,
axial or coronal) views or a custom camera view. (B) The medium view shows the lateral and medial sides of each hemisphere in the figure. (C and D)
The full view shows all sides of the brain surface. According to whether the brain surface file can be divided into two hemispheres, this mode displays
brain models in two ways: (C) if not divisible, the left, right, dorsal, ventral, anterior and posterior sides are displayed separately; (D) otherwise, the
lateral and medial sides of each hemisphere, and the dorsal and ventral sides and the anterior and posterior sides of the entire brain are shown.
doi:10.1371/journal.pone.0068910.g005
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The top 15% connections in strength were displayed as edges in

the network. The radius of an edge represented the weight of the

connection between the two linked nodes. Through visual

inspection, the connections within each module were denser than

the connections between two modules. The long-distance connec-

tions (.90 mm) were colored in orange. Intriguingly, the long-

distance connections were primarily linked the homologous

regions in two hemispheres and the anterior and posterior portions

of the default-mode network within each hemisphere.

Figure 9B illustrates the FCS map of the voxel-based functional

network using volume-to-surface mapping. Hub regions, exhibit-

ing high FCS values, were predominantly observed in the default-

mode network, including the medial prefrontal cortex/ventral

anterior cingulate cortex, dorsal prefrontal cortex, precuneus/

posterior cingulate cortex and inferior parietal lobule. Other

regions included the visual cortex and the insula. These results

were obviously different from those in the region-based network,

suggesting that the hub distribution of the brain functional

networks was dependent on the spatial scales.

Figure 6. Demonstration of object properties. (A) Material property controls the reflectance properties of the surfaces, including choices of
shiny, dull and metal. (B) The shading property controls the color shading for the surface, including choices of flat, faceted and interp. (C) The lighting
property changes the lighting algorithm from flat, gouraud and phong. (D) The light direction determines where the light comes from, i.e., headlight,
right or left.
doi:10.1371/journal.pone.0068910.g006
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Discussion

We developed BrainNet Viewer as a free software for visualizing

macro-scale brain networks (or connectomics), which achieved the

following major functions: 1) display brain networks in multi-

views; 2) display combinations of brain surface, nodes and edges;

3) adjust properties of network elements (i.e., nodes and edges); 4)

map the volume image to brain surface; 5) support various types of

image format exporting and video making; and 6) provide

interactive operations, such as zoom and rotate. In addition, we

constructed functional brain networks from a public dataset and

further analyzed and visualized the topological properties of the

resultant brain networks.

BrainNet Viewer visualizes the topological properties of brain

networks constructed through region-based or voxel-based meth-

ods, as illustrated in Figure 9. For the region-based network, this

toolbox displays the nodes and edges in their positions corre-

sponding to the brain regions and adjusts their color and size

according to required properties. Notably, we selected the AAL

atlas to build a region-based network and visualize its topological

architecture using this software. Given that the AAL atlas is one of

the most widely used templates in human brain connectome

studies, the use of this atlas is representative for connectome

visualization. Notably, other atlases are generated from anatomical

[66,69] or functional [26,67,68] parcellations. These different

parcellations reflect the different organizational information in the

brain, and BrainNet Viewer provides different parcellation choices

for network node definition. For the voxel-based network, we used

volume-to-surface mapping to demonstrate nodal properties. The

visualization results distinguish the topological differences over the

entire brain surface. Moreover, several recent R-fMRI studies

have explored the temporal dynamics of the functional brain

connectome [71–74]. In these studies, brain networks are often

constructed at individual or a period of time points, requiring a

series of network figures. With BrainNet Viewer, researchers easily

generate batched figures or network videos by writing loop codes.

Compared with traditional visualization methods, which illustrate

the network as a mosaic-like matrix or a dot-and-line plot in a

plane, BrainNet Viewer generates a three-dimensional display of

the networks, intuitively provides much more anatomical infor-

mation for the brain and exhibits diversity using both graph-based

network demonstration and volume-to-surface mapping [75].

These advantages make BrainNet Viewer a promising visualiza-

tion platform for brain connectome studies and might inspire new

ideas for understanding the construction principles of brain

networks.

With the advent of brain connectome studies, a number of

toolboxes were developed to construct and analyze macro-scale

brain networks, including PANDA, BCT, GAT, GRETNA,

Brainwaver and eConnectome. These toolboxes provide measure-

ments of brain connectome features but lack the visualization

options necessary to demonstrate biological findings. NetworkX

and Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/) are

two popular network visualization toolboxes to demonstrate

network topological properties using dots and lines. These

programs are suitable for displaying networks constructed from

different fields, including the genome, society, traffic and telecom,

however, ignoring the specific anatomical information of the brain

Figure 7. Interactions between two brains. BrainNet Viewer illustrates the interactions between two brains, as demonstrated here. The nodes
used in this figure were extracted from the AAL90 template, while the connection between each pair of two nodes was randomly generated.
doi:10.1371/journal.pone.0068910.g007
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science. Caret (http://brainvis.wustl.edu/wiki/index.php/Caret:

About) is a widely used toolbox for the visualization and analysis

of the brain cortex, providing an abundant operation at the brain

surface level, but lacking the demonstration for the topology of

graph-based networks. Compared with these connectome toolbox-

es, BrainNet Viewer has an advantage of visualizing the topology of

the macro-scale brain networks with detailed, predefined brain

anatomical or functional information. Another brain connectome

visualization toolkit, Connectome Viewer [76], offers comparable

visualization functions, through a python-based, not Matlab-based,

toolbox. Considering that most of the graph-based brain network

analysis toolboxes were developed in a Matlab environment, our

toolbox exhibits better compatibility and usability, such as software

for the interfaced and batched generation of images. Notably, there

are also simulation and visualization toolboxes for modeling

neuronal networks at a micro-scale, including neuroConstruct

(www.neuroconstruct.org/) [77], PyNN (neuralensemble.org/

PyNN/) [78] and CPT (Connectivity Pattern Tables) [79]. Because

these toolboxes focus on the mechanism of neuronal activities

underlying macro-scale brain networks, we can hardly compare

these software programs with BrainNet Viewer. The toolboxes

described above facilitate brain network studies from different

aspects, and their main features are summarized in Table 1.

Since the BrainNet Viewer was released on the NITRC and

SPM websites, many researchers have adopted this toolbox to

visualize the characteristics and divergences of brain networks for

connectome-based methodological studies [80,81] and under

healthy and diseased conditions, such as age [34], gender

[34,36], intelligence [34], AD [53,82,83], MCI [51,53,84,85],

depression [84,86–88], epilepsy [58,89,90] and addiction [91]. In

addition, some of these figures were selected as cover images for

several high-level neuroscience journals [51,84,87,92,93]. More-

over, several network analysis toolboxes provide interfaces with

network visualization software. For example, BCT generates files

for Pajek and Connectome Viewer. Notably, several brain

connectome toolboxes, such as GAT [61], GRETNA and

RESting-state fMRI data analysis Toolkit (REST, www.restfmri.

net), provide user-friendly interfaces to directly call the functions of

the BrainNet Viewer. The connections between BrainNet Viewer

and these network analysis toolboxes help researchers easily

visualize and assess their results.

Although BrainNet Viewer addresses the challenges in the

visualization of the brain connectome, a few methodological

Figure 8. The data tip displayed using the ‘Data Cursor’ function. The ‘Data Cursor’ function on the toolbar in BrainNet Viewer is used to
interactively obtain information about the vertex on the brain surface. When this function is enabled, clicking anywhere on the brain surface will
generate a data tip with the coordinates and values for the selected vertex and the AAL brain region and Brodmann Area where the vertex belongs.
The vertex selected in this figure shows an MNI coordinate of x = 27.3, y = 255.4 and z = 25.8, with a statistic T value of 18.47. Furthermore, this vertex
belongs to the left precuneus in the AAL template and the Brodmann region 23.
doi:10.1371/journal.pone.0068910.g008
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considerations and directions require future study. As with other

toolboxes developed in the MATLAB environment, BrainNet

Viewer has advantages in development and maintainability.

However, the common problems of high memory consumption

and slow loop execution for MATLAB programs exist in BrainNet

Viewer, similar to other MATLAB packages. Notably, BrainNet

Viewer fluently manages networks constructed using hundreds of

nodes and lower sparsity of edges. When the number of nodes

increases to the level of thousands, the rendering speed becomes

slow, and the memory consumption increases quickly. The ‘out of

memory’ error sometimes occurs on 32-bit operating systems

when dealing with a large network (e.g., 50,000). There might be

two ways to solve this problem. On one hand, the codes of the

toolbox could be further optimized to minimize the memory

consumption. However, such an optimization is still limited under

the MATLAB framework. On the other hand, translating the

source code to a more efficient programming language, such as

Python or C, might be a more efficient solution. With the rapidly

increasing numbers of brain connectome studies, requirements for

different manners of visualization are also mushrooming. For

Figure 9. Visualization of functional brain networks. (A) The region-based network is shown as a ball-and-stick model. The nodes are brain
regions in the AAL atlas and their coordinates, sizes and colors represent the centroids, nodal strengths and modules of the regions, respectively. The
edges represent the connections between different brain regions (top 15% are displayed). The functional connectivity strengths are presented as the
radius of the edges, and long-distance connections (.90 mm) are colored in orange. (B) The voxel-based network is shown using volume-to-surface
mapping. The values of the vertices on the surface indicate the normalized functional connectivity strength of the voxels in the volume data. Several
hub regions with high connectivity strength are rendered in warm colors.
doi:10.1371/journal.pone.0068910.g009
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Table 1. Summary of neuroscience networks tools.

Name Category Feature Environment
Specific file
format Website

BrainNet Viewer Network
visualization

3D graph-based
brain network
demonstration
with nodes and
edges; 3D brain
surface view

Matlab-based;
Windows & Linux

.nv;.node;.edge www.nitrc.org/projects/bnv/

Connectome Viewer Network
visualization

3D graph-based
brain network
demonstration with
nodes and edges;
3D brain surface view

Python-based;
Linux only

.cff http://cmtk.org/viewer/

Caret Network
visualization

3D surface view
and nodes

C++-based;
Windows & Linux

.spec http://brainvis.wustl.edu/wiki/index.php/Caret:About

NetworkX Network
calculation &
visualization

Graph-based
network analysis;
2D demonstration
with dots and lines

Python-based;
Windows & Linux

.net http://networkx.github.io/

Pajek Network
visualization

Graph-based
network analysis;
2D demonstration
with dots and lines

Delphi-based;
Windows only

.pjk http://vlado.fmf.uni-lj.si/pub/networks/pajek/

PANDA Network
construction

Network construction
from dMRI data

Matlab-based;
Linux only

NA www.nitrc.org/projects/panda/

GRETNA Network
construction &
calculation

Network construction
from Resting-state
fMRI data;
graph-based
network analysis

Matlab-based;
Windows
& Linux

NA www.nitrc.org/projects/gretna/

BCT Network
calculation

Graph-based
network analysis

Matlab-based;
Windows
& Linux

NA https://sites.google.com/site/bctnet/

GAT Network
construction &
calculation

Network
construction
from MRI data;
graph-based
network analysis

Matlab-based;
Windows
& Linux

NA http://nnl.stanford.edu/tools.html

Brainwaver Network
construction &
calculation

Network
construction
from Resting-
state fMRI data
(wavelet);
graph-based
network analysis

R-based;
Windows & Linux

NA http://cran.r-project.org/web/packages/brainwaver/

eConnectome Connectivity
calculation

EEG data
preprocessing;
connectivity
analyze

Matlab-based;
Windows
& Linux

NA http://econnectome.umn.edu/

neuroConstruct Neuronal
network
modeling &
visualization

Neuronal
network
analyze; 3D
demonstration
with neuronal
morphology

Java-based;
Windows
& Linux

NA www.neuroconstruct.org/

PyNN Neuronal
network modeling

Neuronal network
simulation

Python-based;
Linux only

NA neuralensemble.org/PyNN/

CPT Neuronal
network
visualization

2D demonstration
of neuronal
network in
matrix view

Algorithm only NA NA

Abbreviations: PANDA, Pipeline for Analyzing braiN Diffusion imAges; BCT, Brain Connectivity Toolbox; GAT, Graph-Analysis Toolbox; GRETNA, Graph-theoRETical
Network Analysis toolkit; Caret, Computerized Anatomical Reconstruction and Editing Toolkit; CPT, Connectivity Pattern Tables; NA, not available.
doi:10.1371/journal.pone.0068910.t001
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instance, in BrainNet Viewer, the brain connectome is treated as a

brain surface using a ball-and-stick model; however, in reality, the

brain regions and interregional connections are typically irregular

objects and long thin fibers, instead of simple balls and sticks.

Showing the brain connectome in both realistic and abstract ways

might enhance our understanding of its underlying principles.

Furthermore, we will improve the current version by including

more functions, such as automatic placement of the nodal labels

without overlapping, statistical analysis, slice image display and

improvements to the user experience.
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