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The desire to correct intensity nonuniformity in
magnetic resonance images has led to the prolifera-
tion of nonuniformity-correction (NUC) algorithms
with different theoretical underpinnings. In order to
provide end users with a rational basis for selecting a
given algorithm for a specific neuroscientific applica-
tion, we evaluated the performance of six NUC algo-
rithms. We used simulated and real MRI data volumes,
including six repeat scans of the same subject, in order
to rank the accuracy, precision, and stability of the
nonuniformity corrections. We also compared algo-
rithms using data volumes from different subjects and
different (1.5T and 3.0T) MRI scanners in order to
relate differences in algorithmic performance to inter-
subject variability and/or differences in scanner per-
formance. In phantom studies, the correlation of the
extracted with the applied nonuniformity was highest
in the transaxial (left-to-right) direction and lowest in
the axial (top-to-bottom) direction. Two of the six al-
gorithms demonstrated a high degree of stability, as
measured by the iterative application of the algorithm
to its corrected output. While none of the algorithms
performed ideally under all circumstances, locally
adaptive methods generally outperformed nonadap-
tive methods. © 2001 Academic Press

Key Words: magnetic field inhomogeneity; MRI; tis-
ue segmentation.

INTRODUCTION

The removal of intensity nonuniformity (“bias”) from
MRI images is an essential prerequisite for the quan-
titative analysis of MRI brain volumes. Spatial varia-
tion of the image signal unrelated to anatomic infor-
mation results from inhomogeneity in the B0 and RF
excitation fields and from regional differences in the
magnetic properties of the tissues being imaged. While
931
such variation may have little effect on the visual in-
terpretation of brain images, it can significantly reduce
the accuracy of computational procedures such as tis-
sue segmentation and brain-surface extraction.

Numerous advantages are associated with the acqui-
sition of magnetic resonance images at high field
strengths, including an approximately linear increase
in signal strength that can be used to improve spatial
resolution; there are also potential advantages in con-
trast behavior due to the field-strength dependence of
tissue relaxation times (Bottomley et al., 1984). How-
ever, these advantages come at a cost: intensity non-
uniformity is a prominent feature of magnetic reso-
nance images acquired at high field strengths.
Although it is possible to create highly uniform radio
frequency (RF) fields in a vacuum or in nonconductive
materials such as silicon oil (Hayes et al., 1985; Li et
al., 1997), biological materials typically have dielectric
properties that cause the effective RF field to
become nonuniform in a frequency-dependent (i.e.,
field-strength-dependent) manner (Simmons, 1994;
Vaughan et al., 1994; Sled and Pike, 1998). Such RF
nonuniformities propagate to image intensity varia-
tions, as both the effective transmit power and relative
receiver sensitivity become dependent on the location
of the sample within the RF field.

Various methods have been devised to detect and
correct for intensity nonuniformity in MRI data sets,
but there have been relatively few studies comparing
the performance of different nonuniformity-correction
(NUC) algorithms on standardized sets of brain im-
ages. Moreover, the evaluation of NUC algorithms is
not a straightforward matter because the true amount
of nonuniformity in MRI images is unknown, and it is
not possible to directly measure the accuracy of the
nonuniformity-correction. Comparisons of NUC meth-
ods have been reported using simulated brain volumes
1053-8119/01 $35.00
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932 ARNOLD ET AL.
with known added biases (e.g., Sled et al., 1997; Zaini et
al., 1999); however, simulated images may not accu-
rately mimic the signal properties of tissue com-
partments in vivo. Although the impact of NUC on
brain-tissue segmentation and tumor response mea-
surements has been studied by DeCarli et al. (1996)
and Velthuizen et al. (1998), intersubject and inter-
canner variability limit the utility of such data sets for
anking algorithmic performance.

In the present study we evaluated six NUC algo-
ithms representing several different approaches to
he estimation and removal of intensity nonuniformity.
uantitative measures were developed to assess the
bility of the selected algorithms to remove varying
mounts of nonuniformity added to an artificial MRI
rain volume and to produce consistent results from a
et of repeat brain scans of a single subject on a single
canner. To address the issue of scanner dependence,
ach algorithm was also applied to high-resolution
rain scans acquired on different scanners in different
nstitutions.

METHODS1

NUC algorithms were evaluated on T1-weighted
MRI volumes because these MRI volumes have become
the de facto standard of the neuroimaging community
or brain segmentation and cortical surface extraction.

hereas dual-echo spin echo (i.e., proton-density- and
2-weighted) volumes can be used for the same pur-
oses, prolonged acquisition times, movement between
cquisitions, reduced signal-to-noise, and significantly
reater image nonuniformity have led most groups to
bandon the dual-echo approach.
The accuracy of nonuniformity correction was as-

essed qualitatively by visual inspection of the nonuni-
ormity corrected volumes, their intensity histograms,
nd the corresponding bias volumes (see below); accu-
acy was also assessed quantitatively by comparing
imulated bias volumes applied to an MRI brain phan-
om with the bias volumes extracted by each algorithm.
recision was evaluated by performing a PCA/CVA
nalysis on sets of six corrected repeat scans of a single
ubject (see below) and examining a scatter plot of the
rst two canonical variables (Strother et al., 1996). All
UC algorithms were run and evaluated on PC/Linux
orkstations.
Algorithms. Of the six algorithms selected for com-

arison, four—n3 (Sled et al., 1998), hum (Brinkmann
t al., 1998), eq (Cohen et al., 2000), and bfc (Shattuck
t al., 2000)—have been described in extenso in the
cientific literature, one (spm) (Ashburner and Friston,

1 The data sets described in this study, as well as BIAS_
COMPARE.PRO, the IDL procedure used to generate Figs. 1–4, are
available for download at http://pet.med.va.gov:8080/papers/tech_
reports/bias_correction.html.
998) is part of the SPM99 software package, and one
cma) was developed and provided at no cost by the
enter for Morphometric Analysis at the Massachu-
etts General Hospital.
An executable version of the n3 algorithm was pro-

ided by Dr. A. C. Evans at the Montreal Neurological
nstitute, and program default values were used for all
un-time parameters. The bfc algorithm was run with

fixed set of three required run-time parameters:
spline spacing 5 96, bias estimate spacing 5 24 and
istogram block radius 5 48). Source code for eq was
rovided by Dr. M. Cohen at the Brain Mapping Center
t UCLA and compiled at the Minneapolis VA Medical
enter. By default, eq calculates a “noise” threshold
ased on a histogram of the raw input volume; how-
ver, we observed slightly better results when a
asked input volume (i.e., nonbrain voxels set to 0)
as used with the noise threshold set to 1; program
efaults were used for the other run-time parameters.
he hum algorithm was implemented based on the
ublished method (Brinkmann et al., 1998). Although
e tested two different values for the block-size param-
ter, all reported results were produced with a blocking
indow of 13 3 13 3 13 cm. The code for cma was

xtracted from the Nautilos library from the Center for
orphometric Analysis at the Massachusetts General
ospital and recompiled; no run-time parameters were

equired. The spm algorithm, provided as part of the
PM99 software package,2 ran without required pa-

rameter input. Minimal pre- and postprocessing was
required in order to reconcile the data formats of our
test volumes with those of n3, cma, and spm. Because
spm did not provide output volumes representing the
estimated nonuniformity (bias volumes), postprocess-
ing was required to calculate the bias volume from the
uncorrected and nonuniformity-corrected volumes.

Brain masking. For all test volumes, a stripping
mask was generated by a consensus technique (Rehm
et al., 1999) to remove skull, meninges, and blood ves-
sels. Masked input volumes with nonbrain voxels set to
0 were used for n3, bfc, eq, and hum; for cma and spm,
unstripped input volumes were used, and the stripping
mask was applied to the output volumes (corrected
data and bias) prior to subsequent quantitative analy-
sis. [cma required an unstripped input volume, and
spm produced different bias fields for the brain when
stripped and unstripped volumes were input.]

Visual analysis. All six NUC algorithms were ap-
plied to a single T1-weighted MRI volume (see below),
and the estimated bias fields were extracted—or com-
puted in the case of spm. Intensity histograms of the
original, and corrected volumes and voxel-wise scatter
plots of the original vs each of the six corrected volumes

2 SPM99 is available for download at http//www.fil.ion.ucl.ac.uk/
spm/spm99.html.
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933CORRECTING INTENSITY NONUNIFORMITY EFFECTS
were computed. Images of an axial slice through the
basal ganglia of the original volume and the corre-
sponding slices from the six nonuniformity corrected
volumes were visually compared.

Phantom studies. We evaluated the performance of
the six NUC algorithms on a set of six brain images
created by adding known biases to the Montreal Brain
Phantom (MBP) with no added noise (http://www.bic.
mni.mcgill.ca/brainweb/selection_normal.html; Collins
et al., 1998). Bias volumes with different spatial distri-
butions were created as the product of (i) three orthog-
onal parabolic functions and (ii) three orthogonal sinu-
soidal functions. Each simulated bias volume was
computed at three different magnitudes of bias (62,

4, and 68%) centered about a value of 1.0; the periods
f the sinusoids varied from 0.8 to 1.2 times the cardi-
al dimensions of the MBP. The six resulting bias
olumes were applied multiplicatively to the MBP fol-
owed by the addition of Gaussian random noise
mean 5 0, SD 5 4.0; mean signal value of white
atter ;115) to produce the test set of phantom brain

olumes. After the NUC algorithms had been run on
he phantom test set, the corrected volumes were nor-
alized to have the same mean as the original, unbi-

sed volume. To account for differences between the
orrection algorithms with regard to their representa-
ion of the estimated nonuniformity and, thereby, to
llow for meaningful comparisons, all calculated bias
olumes were appropriately scaled and offset.
Performance of the NUC algorithms was also evalu-

ted by comparing the corrected volumes to the unbi-
sed phantom volume and by comparing the extracted
ias volumes to the bias volumes that had been applied
o the MBP. The root-mean-squared (RMS) error be-
ween the corrected and unbiased phantom volumes
nd between the extracted and applied bias volumes
as calculated on a slice-by-slice basis and plotted for

onsecutive axial, coronal, and sagittal slices to facili-
ate the discrimination of spatial variations in the non-
niformity correction. The correlation coefficient be-
ween extracted and applied bias volumes was also
sed for quantitative comparisons. All measures were
omputed from the masked brain subvolume, and
lices with fewer than 2000 brain voxels were excluded
rom the comparisons.

Repeat scans of a single subject. Six T1-weighted
rain volumes of a normal volunteer were acquired
ver a 6-month period on a Siemens Vision 1.5T MRI
canner using the 3DFLASH protocol (TR 35 ms, TE 6
s, flip angle 45°, one excitation, 165 3 220 mm FOV,

92 3 256 matrix, 100 slices, voxel dimensions 0.86 3
.86 3 2.0 mm). Stripping (cortical isolation) masks
ere created for each volume as described above, and

he raw volumes and their corresponding brain masks
ere aligned as follows: all possible six-parameter rig-

d-body transformations between pairs of scans were
omputed using AIR 3.0 (Woods et al., 1998). The six-
arameter rigid-body transformation matrices be-
ween any two scans (Tij) were used to obtain a con-
ensus transformation by averaging the 4 3 4
omogeneous coordinate products, Tij

k 5 TikTkj, over all
alues of k to form the average matrix ^Tij

k&k. The aver-
age transformation matrix was then converted to a
six-parameter rigid body transformation by using ^Tij

k&k

to transform an evenly spaced 20 3 20 3 20 point grid
overing the average brain mask and then calculating
he six-parameter Procrustes transformation of the
riginal to the transformed grid. After the NUC algo-
ithms were run on the six aligned brain volumes, each
orrected data volume was mean-normalized to the
orresponding input volume to facilitate quantitative
omparisons between algorithms.
PCA/CVA. To determine the within-algorithm sim-

larity and between-algorithm differences for the six-
epeat-scan evaluation, we employed a voxel-based
rincipal component analysis followed by a canonical
ariables analysis (PCA/CVA) to the nonuniformity-
orrected volumes (Strother et al., 1996). PCA, per-
ormed on 42 [six uncorrected and 6 3 6 5 36 nonuni-
ormity-corrected] MRI volumes, was followed by a
even-group CVA [no correction and six NUC meth-
ds]. A scatter plot of canonical variates (CVs) from the
ignificant dimensions was then generated, and perfor-
ance was evaluated under the assumption that the

best” algorithm would produce the tightest cluster of
onuniformity-corrected volumes. The canonical eigen-

mages associated with the significant CVs were dis-
layed for assessment of spatial differences between
UC algorithms.
Stability. In order to assess the stability of the six
UC algorithms, we recursively applied each of algo-

ithms to its corrected output volume for five iterations
ollowing the initial correction. Results were evaluated
nder the assumption that an ideal algorithm would
ompletely remove any bias on the first pass and that
ubsequent applications of the algorithm would have
o further effect. Therefore, we assumed that the
goodness” of a correction algorithm is related to the
tability of its output, i.e., successively extracted bias
olumes rapidly approach uniformity—recognizing, of
ourse, that a “bad” method could converge to a bad
olution.
High-resolution MRI scans. The performance of the
UC algorithms on two University of Minnesota

UMN) MRI scans (1.5T Siemens Vision scanner, axial
DFLASH, TR 35 ms, TE 6 ms, TI 300 ms, flip angle
5°, one excitation, voxel size 0.82 3 0.82 3 2.0 mm,
cquired 10 months apart) and two UCLA MRI scans
3.0T GE Signa scanner, sagittal 3DGRASS, TR 24 ms,
E 4 ms, flip angle 35°, one excitation, voxel size 1.2 3
.98 3 0.98 mm, acquired 3 months apart), all of dif-
erent normal subjects, was compared. For each of the
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934 ARNOLD ET AL.
four scans, the set of nonuniformity-corrected volumes
plus the uncorrected volume were subjected to a prin-
cipal component analysis. Scatter plots of the first two
scaled eigenvectors from each PCA were compared to
evaluate pattern similarity among the five algorithms
across scanning platforms. Accuracy was assessed by
visual inspection of the corrected volumes and the ex-
tracted bias fields.

RESULTS

Phantom studies. Comparisons of the unbiased and
nonuniformity-corrected MBP, and the applied and ex-

FIG. 1. Comparison of six NUC algorithms using the Montreal
represent measurements derived from consecutive axial, coronal, an
black line) and extracted bias volumes. Second row, RMS error betwe
represents the RMS “error” between the biased and unbiased volume
so that all measures include an RMS error of ;4.0 based on noise
volumes. Fourth row, Voxel-wise correlation coefficient for the extra
tracted bias volumes for the 68% paraboloidal bias are
summarized in Fig. 1. Comparison measures were com-
puted for consecutive axial, coronal, and sagittal slices.
The n3 and bfc bias estimates most closely approxi-

ate the applied bias, whereas the eq, hum, cma, and
pm estimates differ noticeably from the applied bias
Fig. 1, top row). In general, deviation from the applied
ias is greatest along the axial dimension.
The RMS error between the nonuniformity-corrected

olumes and the unbiased MBP is plotted in Fig. 1
second row), together with the RMS “error” (RMS
ias) between the biased and unbiased MBP; because
aussian random noise with a standard deviation of

ain Phantom with 68% paraboloidal bias. Columns (left to right)
sagittal slices. Top row, Average voxel values for the applied (solid
nonuniformity-corrected and unbiased volumes. The solid black line
aussian random noise was added after biasing the phantom volume,
ne. Third row, RMS error between the extracted and applied bias
d vs applied bias volumes.
Br
d
en

s. G
alo
cte



R
a
n

e
b
b
r
b
i
l
n
a
n
s
b
t
s
t
t
a
b
e

t
r
s
o
c
c
F
d
t

935CORRECTING INTENSITY NONUNIFORMITY EFFECTS
4.0 was added after the bias was applied, these RMS
errors have an expected minimum value of approxi-
mately 4.0. For the n3- and bfc-corrected volumes,

MS errors in the nonuniformity-corrected volumes
re close to 4.0, implying that the applied bias has been
early completely removed. For the hum- and cma-

corrected volumes, RMS errors generally range be-
tween 4.0 and those for the biased phantom, suggest-
ing that the applied bias has been only partially
removed. RMS errors for the eq- and spm-corrected
volumes range above those for the biased phantom,
indicating that eq and spm have introduced nonunifor-
mity.

Comparing the applied and extracted bias volumes
(Fig. 1, third row), the low RMS errors for n3 and bfc
indicate that the estimated bias is similar to the ap-
plied bias, although the error for bfc increases in the
low axial slices; RMS errors for eq, hum, cma, and spm
are higher and more variable across the volume. Com-
paring the slice-by-slice correlation coefficients for the
estimated vs applied bias (Fig. 1, fourth row), n3 and
bfc estimates are consistently highly correlated with
the applied bias across all slices. Correlations for hum,
eq, cma, and spm vary widely and are generally low
across the axial slices and higher and more consistent
across the coronal and sagittal slices. Scatter plots of
the applied 68% paraboloidal bias vs the extracted
bias for the six algorithms (Fig. 2) reinforce the conclu-
sions derived from slice-wise correlations plotted in
Fig. 1—that n3 and bfc most accurately capture the
shape of the applied bias.

The plots in Fig. 3, organized in the same manner as
those in Fig. 1, summarize comparisons for the 68%

FIG. 2. Voxel-wise scatter plots of the extracted vs applied (68%
linear Pearson correlation coefficients.
sinusoidal bias. The top-row graphs, illustrating aver-
age voxel values from the applied and extracted bias
volumes, are similar to those in Fig. 1. The n3 bias
stimate is most similar to the applied bias, while the
fc estimate is marginally poorer for the sinusoidal
ias than it was for the paraboloidal bias (cf. Fig. 1, top
ow). The profiles for the sinusoidal and paraboloidal
iases extracted by the other four algorithms are sim-
lar, suggesting that they are influenced by the under-
ying anatomy. As illustrated in Fig. 3 (second row), the
3-corrected volume has the smallest RMS errors rel-
tive to the original phantom, barely above the 4.0
oise level, while RMS errors for bfc, hum, and cma are
lightly higher and more variable than those produced
y the same algorithm for the paraboloidal bias correc-
ions (cf. Fig. 1, second row). RMS errors for the eq- and
pm-corrected volumes are similar in magnitude to
hose in Fig. 1. As regards the RMS error in the ex-
racted bias volumes, n3 estimates vary least from the
pplied bias except in the lower axial slices, followed by
fc and hum estimates and then by cma, eq, and spm
stimates (Fig. 3, third row).
Slice-wise correlations between the applied and ex-

racted bias volumes are illustrated in Fig. 3 (fourth
ow). Correlations for the n3 and bfc bias volumes were
lightly lower in the axial direction than in the parab-
loidal-bias comparison (cf. Fig. 1, fourth row). For
oronal and sagittal slices the correlations for eq, hum,
ma, and spm were comparable to those illustrated in
ig. 1; however, the patterns of correlation were very
ifferent for the four algorithms along the axial direc-
ion—for hum, the correlation was higher for the pa-

araboloidal) bias volumes for the six NUC algorithms; r values are
p
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936 ARNOLD ET AL.
raboloidal bias, whereas the reverse was true for eq,
cma, and spm.

Scatter plots of the applied 68% sinusoidal bias vs
he extracted bias for the six algorithms are illustrated
n Fig. 4. Comparison of the plots in Fig. 4 with those in
ig. 2 demonstrates that the n3 and bfc algorithms
erformed better with the paraboloidal bias than with
he sinusoidal bias, and, in both cases, outperformed
he other four algorithms.

Comparisons identical to those summarized in Figs.
–4 were also made for corrections of 62% and 64% for

FIG. 3. Comparison of six NUC algorithms using the Montrea
represent measurements derived from consecutive axial, coronal, an
black line) and extracted bias volumes. Second row, RMS error betwe
represents the RMS “error” between the biased and unbiased volume
so that all measures include an RMS error of ;4.0 based on noise
volumes. Fourth row, Voxel-wise correlation coefficient for the extra
oth paraboloidal and sinusoidal biases. In general,
he relative ordering of the six algorithms was compa-
able at the three levels of bias for each of the two bias
hapes; however, for bfc the estimated bias was as close
r closer to the applied bias than the n3 estimate at the
ower bias levels.

Repeat scans of a single subject. Figure 5 illustrates
representative slice from the index (first) MRI brain

olume before and after nonuniformity correction.
here is little difference in the appearance of the n3-,

rain Phantom with 68% sinusoidal bias. Columns (left to right)
sagittal slices. Top row, Average voxel values for the applied (solid
nonuniformity-corrected and unbiased volumes. The solid black line
aussian random noise was added after biasing the phantom volume,
ne. Third row, RMS error between the extracted and applied bias
d vs applied bias volumes.
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937CORRECTING INTENSITY NONUNIFORMITY EFFECTS
bfc-, eq-, hum-, and cma-corrected slices, whereas
hite-matter nonuniformity is slightly increased in the

pm-corrected image. Intensity histograms of the
asked brain data from the uncorrected index volume

nd the six nonuniformity-corrected volumes are illus-
rated in Fig. 6. A composite graph (Fig. 6A) demon-
trates that the corrected histograms are similar to
ach other and to the histogram of the uncorrected
olume, with distinct GM and WM peaks; however, the

FIG. 4. Voxel-wise scatter plots of the extracted vs applied (68%
Pearson correlation coefficients.

FIG. 5. Brain slice from a single MRI brain volume before and aft
of the n3-, bfc-, eq-, hum-, and cma-corrected slices. White-matter n
pm-corrected volume demonstrates a reduction in the
eight of the gray-matter peak and a global shift of the
hite-matter peak to lower intensity values (Fig. 6B).
oxel-wise scatter plots of the uncorrected index vol-
me vs each of the six nonuniformity-corrected vol-
mes are illustrated in Fig. 7. The n3-, bfc-, eq-, hum-,
nd cma-corrected volumes are more highly correlated
ith the original biased volume than the spm-corrected
olume.

usoidal) bias volumes for the six NUC algorithms; r values are linear

onuniformity correction. There is little difference in the appearance
niformity is slightly increased in the spm-corrected image.
sin
er n
onu
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938 ARNOLD ET AL.
Figure 8 illustrates the bias fields extracted by the
six correction algorithms for the brain slice in Fig. 5 for
each of the six repeat scans. Bias fields extracted by n3,
bfc, and spm have a low-spatial-frequency pattern,

hereas those extracted by eq, hum, and cma incorpo-
ate higher spatial frequencies and appear to be signif-
cantly influenced by the underlying brain anatomy.

PCA/CVA. A scatter plot of the first two canonical
ariates (CV1, CV2) derived from a voxel-based PCA/
VA of the six repeat scans before and after nonuni-

ormity correction is illustrated in Fig. 9A. [spm was
xcluded because 98% of the variance in the data de-
omposition was accounted for by the difference be-
ween spm and the other five algorithms along the
V1* dimension (inset).] The first dimension (CV1) is
riven by eq, whereas the second dimension (CV2) is

FIG. 6. (A) Intensity histograms of an MRI volume before and
fter nonuniformity correction. (B) Individual intensity histograms
f the six nonuniformity-corrected volumes. Histograms of the n3-,

bfc-, eq-, hum-, and cma-corrected volumes are similar to each other
and to that of the uncorrected volume, whereas the histogram of the
spm-corrected volume demonstrates a reduction in the height of the
gray-matter peak and a global shift of the white-matter peak to lower
intensity values.
riven by cma and hum, although in opposite direc-
ions. Together, the first two dimensions account for
pproximately 84% of the total variance in the CVA
ecomposition. The clustering of CV values demon-
trates that the between-group (algorithmic) differ-
nces are, in all cases, greater than the within-group
ifferences (repeat scans). The first canonical eigenim-
ge (corresponding to CV1, Fig. 9B) contains a central
ypodensity and prominent structural detail, which
eflect differences between the eq-corrected volumes
nd those corrected by the other algorithms. The sec-
nd canonical eigenimage (corresponding to CV2, Fig.
C) illustrates a predominantly axial effect.
Stability. Figure 10 illustrates the results of apply-

ng the six algorithms recursively to their respective
orrected output for five iterations after the initial
orrection. The mean (dot) and 5th-to-95th percentiles
f the data range (bar) are plotted for each successive
pplication. Only n3 and bfc behaved in accordance
ith the assumption that the mean signal value of

uccessively extracted bias volumes should rapidly ap-
roach a constant value, i.e., the variation of succes-
ively extracted bias volumes should rapidly approach
ero. For eq and cma, the mean signal value appeared
o be slowly converging. For hum, the magnitude of the
orrection did not change appreciably after five itera-
ions; spm behaved erratically.

High-resolution MRI scans. Scatter plots of the
rst two scaled eigenvectors from separate PCAs of the
wo UMN high-resolution scans are illustrated in Fig.
1; spm was excluded once again in order to appreciate
ifferences in the behavior of the other five algorithms.
n both scans the first two principal components ac-
ounted for approximately 85% of the total variance of
he decomposition. The bfc-, cma-, and hum-corrected
olumes lie closest to the uncorrected volume; the n3-
nd eq-corrected volumes lie farthest away. Scatter
lots of the first two scaled eigenvectors from the two
CLA PCAs, which account for approximately 87% of

he total variance, are also illustrated in Fig. 11. The
atterns of the two UCLA plots are remarkably simi-
ar, though they differ from the UMN pattern. In the
CLA plots, the cma-corrected volume lies closest to

he uncorrected volume, followed by bfc and hum; once
gain, the n3- and eq-corrected volumes lie farthest
way.
For each of the four high-resolution brain volumes, a

ingle brain slice taken from the uncorrected MRI vol-
me and each nonuniformity-corrected volume, and
he corresponding slice from each of the extracted bias
olumes are illustrated in Fig. 12. Although the gen-
ral shape of the bias differs between the two scanners,
he relative behavior of the five algorithms is similar.
oth n3 and bfc detected a low-spatial-frequency inho-
ogeneity, although the magnitude of the bias de-

ected by n3 was always greater. The performance of
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eq, hum, and cma appears to be influenced to some
degree by the underlying anatomic structure, as evi-
denced by their extracted bias volumes; this effect was
greater for eq than for hum and cma.

FIG. 7. Voxel-wise scatter plots of an uncorrected MRI volume (x
bfc-, eq-, hum-, and cma-corrected volumes are more highly correlated

FIG. 8. Images of nonuniformity “extracted” by the six different
bfc, and spm images exhibit a low-spatial-frequency pattern; however
eq, hum, and cma patterns include higher spatial frequencies and a
DISCUSSION

All six of the NUC algorithms that we compared
stimate intensity nonuniformity based on a post hoc

is) vs each of six nonuniformity-corrected volumes (y-axis). The n3-,
th the original uncorrected volume than is the spm-corrected volume.

rection algorithms (one slice from each of six repeat scans). The n3,
e spm pattern appears to reflect the underlying brain anatomy. The
ar to be significantly influenced by brain anatomy.
-ax
wi
cor
, th
ppe
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analysis of individual T1-weighted MRI image vol-
umes. In general, post hoc techniques depend on the
ssumption that image inhomogeneity is a low-fre-
uency spatial variation that can be distinguished
rom higher-frequency components representing ana-
omic information; these techniques can be broadly
ivided between methods based on low-pass filtering
nd those which evaluate spatial variations in tissue
ntensity parameters.

Filter-based correction methods derive from well-
stablished image processing theory (Brinkmann et al.,
998). Three of the methods that we compared—hum,

FIG. 9. (A) Scatter plot of the first two canonical variates (CV1,
after nonuniformity correction; spm was excluded from the analysis,
or by the difference between spm and the other five methods along
s separated from the other four corrected volume clusters and the u
he hum and cma clusters (closed and open diamonds) from the oth
anonical eigenimage corresponding to CV1. Note the central hyp
igenimage corresponding to CV2. Nonuniformity is most marked a
eq, and cma—represent variations of low-pass filtering.
While hum and cma filter image data in the spatial
domain, eq uses Fourier methods to filter in the fre-
quency domain. The cma algorithm further modifies
the process by filtering a thresholded subvolume rep-
resenting white matter and then extrapolating the es-
timated inhomogeneity to the entire brain volume.

In contrast to filtering methods, the bfc algorithm
utilizes an approach based on normalization of regional
tissue intensity histograms to global values, under the
assumption that tissue parameters are consistent
throughout the MRI volume. The n3 algorithm repre-

) from a canonical variables analysis of six repeat scans before and
cause 98% of the variance in the data decomposition was accounted

CV1* dimension (inset). Note that the eq cluster (closed triangles)
orrected volumes along the CV1 axis, while the CV2 axis separates
three corrected volume sets and the uncorrected volumes. (B) The
nsity and the prominence of structural detail. (C) The canonical

g the axial direction. Note that (B) and (C) are scaled differently.
CV2
be
the
nc
er
ode
lon
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941CORRECTING INTENSITY NONUNIFORMITY EFFECTS
sents an elaboration of tissue signal analysis, using
iterative modeling of low-frequency spatial variations
in the data to maximize high-frequency information in
the intensity histogram of the corrected volume. The
spm algorithm estimates intensity nonuniformity as a
low-frequency component in an iteratively optimized
tissue mixture model initialized with a priori informa-
tion about anatomic tissue distributions.

The relative amount of nonuniformity in our T1-
weighted MRI volumes was generally small; thus, one
might expect that the differences between uncorrected
and corrected volumes should also be small. This was
indeed the case for normal-subject scans, as indicated
by the high correlations of the scatter plots for five of
the six algorithms illustrated in Fig. 7. Visual inspec-
tion of these scatter plots suggests that spm and, to
some extent, eq may have introduced additional non-
uniformity, producing relatively greater scatter about

V1 and EV2) from principal component analyses of uncorrected and
part. Bottom row, Scatter plots of EV1 and EV2 for a similar analysis

e similarity of the 2-D patterns can be quantified as follows: in each
a 2-D vector originating at the center of gravity of the cluster of x,y
in the plot are then summarized by computing the 6-choose-2 dot

can compute the average within-site and between-site correlations,
FIG. 10. Summary plot of the mean and range of extracted
nonuniformity for the initial and five iterations of n3, bfc, eq, hum,
cma, and spm.
FIG. 11. Top row, Scatter plots of the first two scaled eigenvectors (E
ve corrected high-resolution UMN MRI volumes acquired ten months a
f two high-resolution UCLA MRI scans acquired three months apart. Th
roup (UMN1, UMN2, UCLA1, UCLA2), each method is represented as
oordinates. Pairwise similarities between the positions of each method
roducts of the vectors for each pair of methods. From these data one
.879 and 0.708, respectively.
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942 ARNOLD ET AL.
the diagonal. This is consistent with the performance
of eq and spm in the phantom studies and with the
large RMS error in eq- and spm-corrected phantom
volumes.

In the PCA/CVA analysis, corrected volumes pro-
duced by the four non-locally adaptive methods (hum,
q, cma, and spm) differed most from the uncorrected
olumes; inspection of the canonical eigenimages (Figs.
B and 9C) suggests that eq contaminates the ex-
racted bias with anatomical information and that cma
nd hum incorrectly estimate the relative magnitude of
he bias along the axial dimension (although in oppo-
ite directions).

FIG. 12. A representative slice from the uncorrected and cor-
ected volumes (upper rows) and from the extracted bias volumes
lower rows) for each of the UMN and UCLA high-resolution MRI
rain scans.
In the principal component analyses of four subjects
rom two scanners (Fig. 11), the only source of varia-
ion in each of the PCA data sets was the effect of the
onuniformity corrections. The fact that the pattern of
caled eigenvectors in the scatter plots was similar for
he two subjects scanned at each location, but different

for the two scanners, demonstrates that differences
between scanners may also influence the relative per-
formances of NUC methods.

An alternative to evaluating the relative perfor-
mance of different algorithms on real data sets by
means of a quantitative benchmark is provided by the
iterative application of the correction algorithms (Fig.
10). The rapid convergence of the output of n3 and bfc
o a static image volume suggests that the majority of
dentifiable bias has been removed during the first
pplication of the correction.3 The apparent lack of

convergence in the iterated hum output suggests that
something other than nonuniformity is being progres-
sively removed from the image—or that nonuniformity
is being introduced, and the erratic behavior of spm
suggests that it is unstable when operating on rela-
tively uniform image volumes.

Differences in algorithmic performance may be re-
lated to specific design considerations, e.g., to require
input images that are masked to exclude nonbrain
voxels, or to expect specific biases or highly nonuniform
image volumes. Thus, as provided, cma requires un-
masked volumes, whereas eq was optimized to operate
on unmasked volumes4 with a central hyperintensity.
A related issue, which we did not address in this paper,
is whether nonuniformity correction or brain masking
should be performed first.

The use of multiple methods for evaluating the per-
formance of NUC algorithms and the demonstration of
similar rankings across different comparisons using
real image data provide a basis for extending the re-
sults obtained with simulated or phantom data. While
none of the algorithms that we evaluated performed
ideally under all circumstances, locally adaptive meth-
ods (n3 and bfc) generally outperformed nonadaptive

ethods (eq, cma, hum, and spm). The fact that the
ighest and lowest correlations of the extracted with
he applied bias occurred in the transaxial (left-to-
ight) and axial (top-to-bottom) directions, respectively
Figs. 1 and 3), presumably reflects the relative degree
f anatomic symmetry in the corresponding directions,
nd it seems reasonable to assume that locally adap-
ive techniques may be able to better accommodate
natomic asymmetry than nonadaptive techniques.

3 For n3, the rate of convergence is somewhat arbitrary, since the
algorithm is implemented as an iterative procedure with two stop-
ping conditions; for cma and eq, the step-size parameter was, by
default, set to 1.0.

4 However, as noted above, eq performed better when the input
volumes were masked.
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