
Baby Brain Toolkit

Fbrain ERC project: Computational Anatomy of Fetal Brain

August 29, 2013

Contents

1 Introduction 2
1.1 Copyright . 3
1.2 Installation . 3

1.2.1 Dependencies . 3
1.2.2 Download and compile the BTK sources . 4

2 The BTK pipelines 5
2.1 Image conversion . 5
2.2 Anatomical image reconstruction . 5
2.3 Reconstruction of the diffusion sequence . 5
2.4 Tractography . 5

3 Applications 6
3.1 Denoising [2] . 6
3.2 Anatomical reconstruction . 6
3.3 Anatomical segmentation . 7
3.4 Reconstruction of DW sequences [4] . 7
3.5 Tractography [5] . 9
3.6 Atlas construction [6] . 12
3.7 Mask Extraction . 14
3.8 Fiber tracts Clustering . 14

4 Utilities 15
btkApplyMaskToImage . 15
btkApplyTransformationToImage . 15
btkAverage3DImages . 15
btkAverageImagesWithReference . 15
btkBinarizeLabels . 15
btkBinarizeMask . 15
btkBinarizeTissueProbabilityMaps . 15
btkColorFiberTractsByOrientation . 15
btkComputeChamferDistance . 15
btkComputeCoefficientOfDeterminationForAtlas . 15
btkComputeFeatureSelectionResiduals . 16
btkComputeOverlap . 16
btkComputeSoftMaskUsingOrthogonalImages . 16
btkConvertGradientTable . 16
btkCropImageUsingMask . 16
btkDifferentialBiasCorrection . 16
btkDiffusionScalarMeasurement . 16
btkDistanceBetweenBinaryImages . 16
btkExtractMaskUsingBoundingBox . 16
btkExtractOneImageFromSequence . 16

1

btkFCMClassification . 16
btkFSLToITKTransform . 16
btkGenerateSimulatedFiber . 16
btkGenerateVtkFileFromFiberDataTextFiles . 16
btkHistogramMatching . 16
btkImageGaussianFilter . 16
btkImageHistogram . 16
btkImageInjection . 16
btkImageMorphologicalClosing . 16
btkImageMorphologicalTopHat . 16
btkImageResampling . 17
btkImageSimilarity . 17
btkImageSubtract . 17
btkInverseDisplacementField . 17
btkIteratedBackProjection . 17
btkMajorityVoting . 17
btkMidwayHistogramEqualization . 17
btkModifyImageUsingLookUpTable . 17
btkNiftiToNrrd . 17
btkNrrdToNifti . 17
btkPSNR . 17
btkPrintImageInfo . 17
btkProbabilityMapNormalization . 17
btkReconstructionComparisonTool . 17
btkRegisterDiffusionToAnatomicalData . 17
btkReorientDiffusionSequenceToStandard . 17
btkReorientImageToStandard . 18
btkResampleLabelsByInjection . 18
btkRescaleIntensity . 18
btkSequenceNormalization . 18
btkSetStandardCoorSystem . 19
btkSimulateLowResolutionImage . 19
btkSimulateMotionSliceBySlice . 19
btkSimulateStandardViewFromIsotropicImage . 19
btkSimulateStandardViewsFromImage . 19
btkTractDensityMap . 19
btkTranslateImageOverTemplate . 19
btkWeightedSumOfAffineTransforms . 19
btkWeightedSumOfImages . 19

5 Viewers 20
btkSlicesMotionViewer . 20
btkDiffusionViewer . 20

1 Introduction

BTK stands for Baby Brain Toolkit. This toolkit is developed in the context of the Fbrain ERC project:
“Computational Anatomy of Fetal Brain”1. Studies about brain maturation aim at providing a better
understanding of brain development and links between brain changes and cognitive development. Such
studies are of great interest for diagnosis help and clinical course of development and treatment of
illnesses. Several teams have begun to make 3D maps of developing brain structures from children to
young adults. However, working out the development of fetal and neonatal brain remains an open issue.
This project aims at jumping over several theoretical and practical barriers and at going beyond the

1http://icube-miv.unistra.fr/fr/index.php/ERC_FBrain

2

http://icube-miv.unistra.fr/fr/index.php/ERC_FBrain

formal description of the brain maturation thanks to the development of a realistic numerical model of
brain aging.

1.1 Copyright

This software is governed by the CeCILL-B license under French law and abiding by the rules of distri-
bution of free software. You can use, modify and/ or redistribute the software under the terms of the
CeCILL-B license as circulated by CEA, CNRS and INRIA at the following URL: http://www.cecill.info.

As a counterpart to the access to the source code and rights to copy, modify and redistribute granted
by the license, users are provided only with a limited warranty and the software’s author, the holder of
the economic rights, and the successive licensors have only limited liability.

In this respect, the user’s attention is drawn to the risks associated with loading, using, modifying
and/or developing or reproducing the software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also therefore means that it is reserved
for developers and experienced professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software’s suitability as regards their requirements in conditions enabling
the security of their systems and/or data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.

Any researcher reporting results using BTK should acknowledge this software by citing the following
article:

1. F. Rousseau, E. Oubel, J. Pontabry, M. Schweitzer, C. Studholme, M. Koob, J.-L. Dietemann:
BTK: An Open-Source Toolkit for Fetal Brain MR Image Processing. Computer Methods and
Programs in Biomedicine, pp. 65–73, Vol. 109, Num. 1, January 2013, also available on HAL.

1.2 Installation

1.2.1 Dependencies

Baby Brain Toolkit (BTK) needs the following packages2:

• CMake, Tclap, OpenMP, ANN, Doxygen and Git. These libraries can be installed using the
following command line:

– for debian-based distributions: apt-get install build-essential libgl1-mesa-dev libxt-dev

cmake cmake-curses-gui libtclap-dev libgomp1 libann-dev doxygen git-core

– for MacOSX using macports3: port install cmake tclap libANN doxygen git-core

• Insight Toolkit (ITK) version 4.3.1

– Download the tar.gz archive of ITK v4.3.1

– Extract the archive

– Then open a terminal and type :

mkdir ITK-build

cd ITK-build

ccmake ../(your-ITK-Source-folder)/

This will bring up the CMake configuration screen. Press [c] for configure and then use [t] to
toggle the advanced mode. Make the following changes:

BUILD_TESTING = OFF

CMAKE_BUILD_TYPE = Release

ITK_USE_REVIEW = ON

ITK_BUILD_ALL_MODULES = ON

BUILD_DOCUMENTATION = OFF

2BTK has been tested under Debian 6.0.7 and MacOSX 10.8.3
3When configuring in cmake, please use /opt/local/include for TCLAP DIRECTORY

3

http://www.cecill.info
http://hal.archives-ouvertes.fr/index.php?halsid=d0mrvug09qhhou49vgaqc6ogd3&view_this_doc=hal-00671183&version=1
http://www.cmake.org
http://tclap.sourceforge.net
http://openmp.org
http://www.cs.umd.edu/~mount/ANN
http://www.doxygen.org
http://git-scm.com/
http://www.itk.org/ITK/resources/software.html

Then press [c] to configure and [g] to generate the make file. Finally, go to the build folder of
ITK (ITK-build) and type make at the prompt to obtain the final build of ITK.

• Visualization ToolKit (VTK) version 5.10.1 4

– Download the tar.gz archive of VTK v5.10.1

– Extract the archive

– Then open a terminal and type :

mkdir VTK-build

cd VTK-build

ccmake ../(your-VTK-Source-folder)/

This will bring up the CMake configuration screen. Press [c] for configure and then use [t] to
toggle the advanced mode. Make the following changes:

BUILD_TESTING = OFF

BUILD_EXAMPLE = OFF

CMAKE_BUILD_TYPE = Release

VTK_USE_INFOVIS = ON

VTK_USE_RENDERING = ON

Then press [c] to configure and [g] to generate the make file. Finally, go to the build folder of
VTK (VTK-build) and type make at the prompt to obtain the final build of VTK.

• Python, Numpy (Optional) These libraries can be installed using the following command line:

– for debian-based distributions: apt-get install python python-numpy

– for MacOSX, numpy can be easily installed using ScipySuperpack.

1.2.2 Download and compile the BTK sources

• Get the BTK sources: git clone https://github.com/rousseau/fbrain.git

• Then:

mkdir fbrain-build

cd fbrain-build

ccmake ../fbrain

Make the following changes on the CMake configuration screen :

ITK_DIR = (YOUR-ITK-BUILD-FOLDER)

VTK_DIR = (YOUR-VTK-BUILD-FOLDER)

CMAKE_BUILD_TYPE = Release

then :

make

If you want generate the doxygen documentation the BUILD DOCUMENTATION option must be set
to ON in CMake configuration :

BUILD_DOCUMENTATION = ON

Then for generating the documentation run :

make doc

Most of the programs of the BTK suite use the OpenMP library for multi-threading purpose5. The
number of cores used can be tuned using the following command line (in this example, 4 cores will be
used): export OMP NUM THREADS=4

4Please note that this version of VTK can be installed on Mac OSX using macports.
5Please note that the current Apple compiler (llvm gcc 4.2.1) does not take into account OpenMP.

4

http://www.vtk.org/VTK/resources/software.html#previous
http://www.python.org/
http://numpy.scipy.org/
http://fonnesbeck.github.com/ScipySuperpack/

2 The BTK pipelines

BTK allows to implement a pipeline for the processing of fetal images, i.e. the reconstruction of anatom-
ical and diffusion data, and the final tractography, all expressed in the same local coordinate system.
This processing can be summarized in the following steps: 1) image conversion, 2) anatomical image
reconstruction, 3) recontruction of the diffusion sequence, 4) registration of diffusion to anatomical data
and 5) tractography.

2.1 Image conversion

BTK supports and has been tested by using images in Nifti format. However, images are frequently
available in DICOM format and an image conversion is required. This can be performed by using
dcm2nii, Slicer or other softwares.

Let say that you have 3 (possibly orthogonal) anatomical images:

ana01.nii.gz

ana02.nii.gz

ana03.nii.gz

and one set of DWI images:

dwi.nii.gz

dwi.bvec

dwi.bval

Please check that images are not flipped.

NOTE: The set of three files .nii.gz, .bvec, and .bval used to describe a DW sequences are represented
in BTK just by the basename (“dwi” in the previous example), and the sequences must be provided in
this way to the different applications. This allows to have shorter command lines and the use of consistent
filenames.

2.2 Anatomical image reconstruction

The anatomical image reconstruction pipeline is depicted in Figure 1. The corresponding command lines
are shown in Figure 2. This pipeline consists in: 1) converting the data from DICOM to NIFTI, 2)
manual masking of the brain (optional step which can improve the reconstruction results) and image
cropping (based on the size of the masks), 3) image denoising, 4) motion correction and super-resolution,
5) reorientation of the image using landmarks placed using Slicer.

2.3 Reconstruction of the diffusion sequence

The processing pipeline described in this section is dedicated to DWI of the fetal brain (depicted in
Figure 3). The corresponding command lines are shown in Figure 4. It is similar to the anatomical
image pipeline but it includes processing tools dedicated to DWI: 1) data conversion using dcm2nii, 2)
sequence normalization (the B0 image are registered together using affine transforms and then averaged
to produce one B0 image), 3) B0 image extraction and manual masking using ITKSNAP, 4) motion
correction and RBF interpolation to compute the reconstructed DW sequence, 5) reorientation of the
image using landmarks placed using Slicer. This final step (sequence reorientation) is very important
since it allows the user to visualize the DW data using consistent color coding schemes. Please see also
Section 3.4.

2.4 Tractography

If you have followed the previous steps correctly, at this point you should have the reconstructed anatomi-
cal and diffusion data spatially aligned, and ready to perform the tractography. To do this, BTK provides
btkTractography (Section 3.5).

5

http://nifti.nimh.nih.gov/nifti-1
http://www.cabiatl.com/mricro/mricron/dcm2nii.html
http://www.cabiatl.com/mricro/mricron/dcm2nii.html

Figure 1: Overview of the processing pipeline for anatomical data in BTK. Slicer3D (www.slicer.org) is
used to convert the DICOM data to NIFTI format and for the placement of landmarks on which is based
the reorientation of the 3D reconstructed image. The use of Slicer for these steps allows the user to check
the orientation consistency between the three anatomical images (axial, coronal, sagittal for instance).
ITKSNAP (www.itksnap.org) is used to create a rough mask of the brain (this step is optional).

3 Applications

3.1 Denoising [2]

btkNLMDenoising This program applies a non-local mean filter to a 3D image for denoising purpose.
Usage: -i ana.nii.gz -o ana nlm.nii.gz . The best results are usually obtained by using a
mask (or a padding value). This is an implementation of the method proposed by Coupé et al. in
[2].

btkNLMDenoising4DImage This program applies a non-local mean filter to each 3D image of a 4D
image, for denoising purpose. Usage: -i dwi.nii.gz -o dwi nlm.nii.gz . The best results are
usually obtained by using a mask (or a padding value).

3.2 Anatomical reconstruction

btkImageReconstruction This program allows to obtain a high-resolution image from a set of low-
resolution images, typically axial, coronal, and sagittal acquisitions (similar to [7]).

Minimal usage: btkImageReconstruction -i ana01.nii.gz · · · -i anaN.nii.gz

-o ana reconstructed.nii.gz --box.

Recommended usage: btkImageReconstruction -i ana01.nii.gz · · · -i anaN.nii.gz

-m mask01.nii.gz · · · -m maskN.nii.gz -o ana reconstructed.nii.gz --mask.

6

Figure 2: Command lines corresponding to the processing pipeline for anatomical data in BTK. On the
left are shown the blocks used in the anatomical data pipeline (Figure 1) and on the right the correspond
command lines.

The use of a mask provide better results since it allows an accurate estimation of the initial
transform, and constrains the registration to the region of interest.

The full list of optional parameters of the method can be obtained by btkImageReconstruction

--help

btkSuperResolution To be documented.

3.3 Anatomical segmentation

btkTissueSegmentation This program allows to obtain :

• A segmentation of the brain which separate pericerebral LCR and ventricules,

• A segmentation of the cortex inside of a region of interest defined from the border between
brain and pericerebral LCR,

as described in [1].

Usage: btkTissueSegmentation -i ana.nii.gz -s intracranian volume.nii.gz

-l brainstem segmentation.nii.gz -l cerebellum segmentation.nii.gz

-o brain segmentation.nii.gz -o cortex segmentation.nii.gz

btkLabelPropagation This program applies a patch-based label propagation algorithm for segmenta-
tion [8]. As a supervised method, it takes as input a textbook containing several anatomical images
and the corresponding segmentation maps.

3.4 Reconstruction of DW sequences [4]

The reconstruction of diffusion-weighted (DW) sequences aims at obtaining a sequence corrected for
fetal moving and eddy-current distortions. This can be performed in BTK by using the two following
applications.

7

Figure 3: Overview of the processing pipeline for diffusion data in BTK. dcm2nii is used to convert
the DICOM data to NIFTI format and Slicer for the placement of landmarks on which is based the
reorientation of the 3D reconstructed image. ITKSNAP is used to create a rough mask of the brain.

btkGroupwiseS2SDistortionCorrection It performs a groupwise slice-by-slice registration of the
image components of the sequence.

Minimal usage: btkGroupwiseS2SDistortionCorrection -i dwi normalized.nii.gz

-o dwi reconstructed.nii.gz -t transform folder.

-i dwi sequence noramlized (Utilities/btkSequenceNormalization).

-o dwi sequence reconstructed.

-t folder to save the transformation files

The slice-by-slice transform for a given DW image is saved as a set of N transforms in ITK format,
with N the number of slices in the image.

NOTE: For slice registration, 20% of the samples are used for computing the image metric. As
the region of interest of the slice can be small, this number of samples might be insufficient to
compute the metric accurately. However, this percent of samples has been sufficient for the tested
sequences.

btkRBFInterpolationS2S It performs an interpolation of scattered data generated from the appli-
cation of slice-by-slice transforms. To this end, radial basis functions are used. By default, the

8

htpp://www.itksnap.org

Figure 4: Command lines corresponding to the processing pipeline for diffusion data in BTK. On the left
are shown the blocks used in the anatomical data pipeline (Figure 3) and on the right the correspond
command lines.

output has isotropic voxels of size equal to the in-plane resolution of the input.

Minimal usage: btkRBFInterpolationS2S -i dwi normalized.nii.gz -m mask.nii.gz

-o dwi interpolated.nii.gz -t transformation folder.

-i dwi sequence normalized

-m mask for the B0 image

-o dwi sequence interpolated

-t folder with the transformations generated by btkGroupwiseS2SDistortionCorrection

3.5 Tractography [5]

Standard usage

Suppose you want to perform a tractography on a diffusion weighted MRI dataset. You should have
a dwi image, the corresponding gradient vectors’ coordinates, a mask of the brain white matter and a
label image of the seeds. Assume this data is stored in files named respectively for instance dwi.nii.gz,
dwi.bval, dwi.bvec, mask.nii.gz and seeds.nii.gz. The tractography is accomplished by the com-
mand below.

btkTractography -d dwi.nii.gz -m mask.nii.gz -r seeds.nii.gz

When the program terminates its task, the probability connection map and the fibers estimation are
saved in files respectively named map.nii.gz and fibers.vtk. The connection map is a volume image
of probability intensities (i.e. intensities between 0 and 1) with the same origin, orientation and spacing
as the diffusion weighted image. The fibers are polygonal data of VTK library in world coordinates.

The file named seeds.nii.gz is a label map which is used to generate seeds for the algorithm. The
spacing in millimeters between seeds can be adjust with the option --seed spacing.

Before doing anything, be sure that the diffusion sequence has been normalized by using the utility
btkDiffusionSequenceNormalization.

This program contains three different algorithms: a tensor streamline, an fODF streamline and a
fODF particle filtering algorithm. The choice of the model to use is achieved by using the option
--tensor, which set the diffusion model to tensor model. The choice of the algorithm is achieved by
using the option --streamline, which set the algorithm to use to the streamline one.

9

Figure 5: Effect of the step size option on a particle’s trajectory. With a large step size (right), the
particle may overshoot the trajectory of the ground truth.

Advanced usage

In addition to standard arguments of btkTractography program, there are some other parameters that
let you to alter algorithm’s behaviour. These options can be classified into three groups : model’s options,
constraints on trajectory and tracking options. The first group options allow you to tweak the model
(for more details about fODF modeling, please refer to [3]). The second group options let you to control
the fiber trajectory. These options provide prior informations to the algorithm. The last group options
are dedicated to the tracking algorithm control.

Since the default parameters values may work in the most of cases, they are optional. A list is of
optional features is avaible by using the command

btkTractography --help or btkTractography -h

and program’s arguments are much more described below.

Model’s order (fODF only)

The model’s order (i.e. the spherical harmonics’ order) can be specified by the option

--model order <order> ,

for order ∈ {2, 4, 6, 8}. The default value is 4. For more details, please refer to [3].

Model’s regularization (fODF only)

A Laplace-Beltrami regularization coefficient is used to assume a better estimation of the model. This
coefficient can by manually modified by the option

--model regularization <coefficient> ,

for coefficient ∈ R. The default value is set as 0.006. For more details, please refer to [3].

Displacement step size

The displacement step size of a moving particle can ben adjusted as you want by using the option

--step size <length> ,

where length ∈ R
∗

+. Note that this option is expressed in mm. The default value is fixed at 0.5 mm. By
setting a big step size, the particles will move quickly. So the biger is the step, the faster the algorithm
will finish, but as shown by Fig. 5, some informations may be missed and the particle’s trajectories may
overshoot the ground truth, resulting in a bad estimation.

Angular threshold

An angular threshold prevent a particle to return back. This option has to be expressed in radian and
can bet set by

--angular threshold <angle> ,

where angle ∈]0, 2π[. The default value is set as a π

3
angle. As illustrated in two dimensions in Fig. 6, an

angle threshold is used to define an allowed area for successive sampled directions. This can be seen as
a global curvature parameters on trajectories. A small angle defines trajectories with a small curvature.
This is a prior information on ground truth trajectory.

10

Figure 6: An angle threshold allows the algorithm to sample successive direction only in the cone defined
by this angle. This illustration show the principle in two dimensions.

Figure 7: Local effect of rigidity parameter on a particle’s trajectory. This parameter helps to “attract”
the current displacement vector in the direction of the previous displacement vector of a particle. It
correspond to a concentration paramter of a von Mise-Fisher density probability used in the prior density
of the system. For instance, a rigidity of 0 leads to an equiprobable distribution, whereas a rigidty tending
to infinity leads to a distribution focused on a point.

Trajectory interpolation method (streamline only)

When using streamline algorithm, by default the Runge-Kutta method at order 4 is used. The Euler’s
method can be used instead by setting the option --no RK4.

Rigidity (particle filter only)

The rigidity option controls how much you want the particles to have straight trajectory. You can adjust
it by

--curve constraint <rigidity> ,

where rigidity ∈ R
∗

+. The default value is fixed at 30. This value correspond to a concentration
parameter of a von Mises-Fisher density probability used in the prior density of the system. As Fig. 7
illustrates locally in two dimensions, a high value leads to a straight trajectory.

Number of particles (particle filter only)

The number of particles in the system is set by the option

--number of particles <number> ,

where number ∈ N
∗. By default, the algorithm will use 1000 particles. A poor number of particles leads to

a short computation time and a poor estimation. A large number of particles leads to a long computation
time and a good estimation. In general, the default number of particles is a good compromise between
computation time and estimation.

Resampling threshold (particle filter only)

This option modify the resampling threshold of the system. When the number of effective particles in
the system falls below this resampling threshold, the particles are resampled according a multinomial
resampling. It can be adjust by

--resampling threshold <percent> ,

11

where percent ∈ [0, 1] is the percent of minimal effective particles in the system. A low threshold
value will result in an inefficient algorithm because the particles with low weight are not are not often
eliminated. Conversely, a high threshold value leads to a bad estimation because the search space will
not be explored enough.

3.6 Atlas construction [6]

There are two steps for atlas construction: filling the data script and building the atlas using the scripts.
The following sections describe how you can do it.

Filling the data script

The data script (btkAtlasData.py) is used to give information to the executed script about the directories,
the algorithms’ options, which image modalities are used, etc. It has to be customized according to the
data you have.

The atlas construction scripts take as input series of images (such as T2, label images, etc.), corre-
sponding to the patients of the dataset. The input files should be named as patientIdentifier modalityIden-
tifier.nii.gz and placed in the specified directory for the modality modalityIdentifier. There are basically
two use cases: 1) you do not have any label image or 2) you have a label image.

If you are working without labels, and for instance you only have T2 image, you have to add the
following piece of code in the modalities part of the script.

T2 modality

Identifier of the modality is T2 (input will be patientIdentifier_T2.nii.gz)

ModalityImage = ’T2’

Initialization

modalities[ModalityImage] = {}

T2 images will be used during registration

modalities[ModalityImage][UseInRegistration] = True

T2 images will be used during regression

modalities[ModalityImage][UseInRegression] = True

The weight of T2 images is 1

modalities[ModalityImage][ModalityWeight] = 1

The path of T2 images is /path/to/data/T2

modalities[ModalityImage][ModalityDataPath] = dataPath + ’/T2’

T2 is not a label

modalities[ModalityImage][IsTissueMap] = False

T2 is not a label, this field does not matter

modalities[ModalityImage][TissueLabel] = 0

If you are working with labels, and for instance you have T2 images and labels images named patien-
tIdentifier Tissues.nii.gz in the data directory /path/to/data/Tissues. Assume the label images contains
5 labels and you want to use only 2 labels (GM and WM). So you have to add the following piece of
code in the modalities part of the script.

T2 modality

Identifier of the modality is T2 (input will be patientIdentifier_T2.nii.gz)

ModalityImage = ’T2’

Initialization

modalities[ModalityImage] = {}

T2 images will be used during registration

modalities[ModalityImage][UseInRegistration] = True

T2 images will be used during regression

modalities[ModalityImage][UseInRegression] = True

The weight of T2 images is 1

modalities[ModalityImage][ModalityWeight] = 1

12

The path of T2 images is /path/to/data/T2

modalities[ModalityImage][ModalityDataPath] = dataPath + ’/T2’

T2 is not a label

modalities[ModalityImage][IsTissueMap] = False

T2 is not a label, this field does not matter

modalities[ModalityImage][TissueLabel] = 0

GM modality

Identifier of the modality is GM (input will be patientIdentifier_GM.nii.gz)

ModalityImage = ’GM’

Initialization

modalities[ModalityImage] = {}

GM images will be used during registration

modalities[ModalityImage][UseInRegistration] = True

GM images will be used during regression

modalities[ModalityImage][UseInRegression] = True

The weight of GM images is 0.5

modalities[ModalityImage][ModalityWeight] = 0.5

The path of GM images is /path/to/data/GM

modalities[ModalityImage][ModalityDataPath] = dataPath + ’/GM’

GM is a label

modalities[ModalityImage][IsTissueMap] = True

GM is the label 1

modalities[ModalityImage][TissueLabel] = 1

WM modality

Identifier of the modality is WM (input will be patientIdentifier_WM.nii.gz)

ModalityImage = ’WM’

Initialization

modalities[ModalityImage] = {}

WM images will be used during registration

modalities[ModalityImage][UseInRegistration] = True

WM images will be used during regression

modalities[ModalityImage][UseInRegression] = True

The weight of WM images is 0.5

modalities[ModalityImage][ModalityWeight] = 0.5

The path of WM images is /path/to/data/WM

modalities[ModalityImage][ModalityDataPath] = dataPath + ’/WM’

WM is a label

modalities[ModalityImage][IsTissueMap] = True

WM is the label 3

modalities[ModalityImage][TissueLabel] = 3

Building atlas

Once the data script Scripts/btkAtlasData.py has been copied in your working directory and filled ac-
cording to the dataset and the algorithms’ options (see previous section for some help), the atlas has
to be built using dedicated scripts. First, the directory where the data script is have to be added in
the python path environnement variable. For instance, in a terminal, the following command add the
current directory in the python path environnement variable:

export PYTHONPATH = $PYTHONPATH:‘pwd‘ .

Finaly, the atlas construction can be achieved by calling directly the following python scripts.

btkPrepareAtlasData This optional script will split the tissue label map (if any and named patient-
name Tissues.nii.gz) into separate tissue probability maps. Tissue name and label are controlled

13

by setting up the script Scripts/btkAtlasData.py.

Usage: btkPrepareAtlasData.py

btkCreateTemplate.py This script will use the informations contained in the data script to produce
a template normalization as output.

Usage: btkCreateTemplate.py

btkCreateLongitudinalAtlas.py This script will use the informations contained in the data script
and the output of the script btkCreateTemplate.py to produce a longitudinal atlas over gestionnal
ages (in weeks) as output. So, the script btkCreateTemplate.py must be executed before using this
script.

Usage: btkCreateLongitudinalAtlas.py

3.7 Mask Extraction

Suppose you want to extract automicaly masks of your images. First of all you should have some Atlas
of foetal brain for different ages (in week). In Addition you should know age of every image you want to
process. The pipeline will registrate the corresponding age template with the current image, finaly you
will have a new template succefully registrate on you image and you can use it as a mask. The mask
extraction can be achieved by calling directly the first following python script.

btkMaskExtraction.py This script will contain all your images, you must edit it ! It contain examples.
This script is the only one you should execute, it will automaticaly search and execute the second
one.

Usage: btkMaskExtraction.py

btkMaskExtractionProcess.py This script will process the pipeline, you must edit the images directory
and template directory. Note that your image directory should respect a hierarchy (written in the
script).

Usage: Should be run by btkMaskExtraction.py or for advance user you can call like this :
btkMaskExtractionProcess.py subject exam age image01 image02 ...

3.8 Fiber tracts Clustering

Fiber tracts clustering is used to map the well-known fiber bundles of white matter. This can be
performed using the following applications:

btkProbabilisticSegmentationMapBasedClustering As supervised method, this program takes as
input a probabilistic segmentation MAP of brain tissue which is an 4D image in Nifti format.

Usage: btkProbabilisticSegmentationMapBasedClustering -b fiber tractography.vtk -p

4D prob segmentation map.nii.gz -o fiber clustering.vtk

Fig.8 shows an example of clustering results obtained using the method above.

btkDistanceFibersKMeansApproximationClustering As unsupervised method, this programmakes
it possible to cluster the fibers according to their anatomical regions using a distance metric based
on the similarity between fibers.

Usage: btkDistanceFibersKMeansApproximationClustering -b fiber tractography.vtk -d

distance measure -c number of clusters -o fiber clustering.vtk

The full list of optional parameters of this method can be obtained by:
btkDistanceFibersKMeansApproximationClustering --help

Fig.9 shows an example of clustering results in the corpus callosum region obtained using the
method above with the following input parameters: -d 10 -c 7.

14

http://nifti.nimh.nih.gov/nifti-1

Figure 8: An example of fiber tracts clustering in the whole brain using
btkProbabilisticSegmentationMapBasedClustering method. The fibers from the tractography
process and final clustering fiber bundles are shown in the first and second row, respectively. Three
viewing angles of 3D depictions of fibers are shown (from left to right): left lateral view, anferior view
and interior view.

Figure 9: An example of fiber tracts clustering in the corpus callosum using
btkProbabilisticSegmentationMapBasedClustering method. The region of interest on the corpus
callosum, fibers from the tractography process and final clustering fiber bundles are shown from left to
right, respectively. The fibers are clustered according to anatomical regions as proposed by Witelson.

4 Utilities

btkApplyMaskToImage : Multiply an image with a mask.

btkApplyTransformationToImage : Resample an image using a reference and a transformation (itk
or btk).

btkAverage3DImages : Compute the mean (and variance) image of a set of 3D images.

btkAverageImagesWithReference : Creates a high resolution image from a set of low resolution
images.

btkBinarizeLabels : Binarize one label image (depending on the label value chosen).

btkBinarizeMask : Binarize a float image using a threshold.

btkBinarizeTissueProbabilityMaps : Binarize a set of probability maps ([0,1]) into a short image
(by taking the max probability at each voxel).

btkColorFiberTractsByOrientation : Color the fibers (polydata) by their orientation (local or
global).

btkComputeChamferDistance : Compute the chamfer distance.

15

btkComputeCoefficientOfDeterminationForAtlas : Compute the coefficient of determination (R2)
for atlas made with regression script (see Atlas part of this document).

btkComputeFeatureSelectionResiduals : Compute the residuals of the feature selection algorithm
(norm of the reconstruction error).

btkComputeOverlap : Compute the overlap (Dice coefficient and Jaccard index) between two label
images.

btkComputeSoftMaskUsingOrthogonalImages : Compute soft masks of a set of images using the
geometry of protocol acquisition (i.e. orthogonal images).

btkConvertGradientTable : Transform gradients from world to image coordinates.

btkCropImageUsingMask This program crops one (3D or 4D) image using a 3D mask.

btkDifferentialBiasCorrection : Differential bias correction method for n images (Leung et al. Neu-
roimage 2012).

btkDiffusionScalarMeasurement : Compute diffusion scalars (tensors and high-order; e.g. FA, GFA,
GA, FMI, etc.)

btkDistanceBetweenBinaryImages : Compute Hausdorff and Mean Contour Distances between
two binary images (ITK Filters: HausdorffDistanceImageFilter and ContourMeanDistanceImage-
Filter).

btkExtractMaskUsingBoundingBox : Extract Masks using the intersection of the bounding boxes
of images.

btkExtractOneImageFromSequence This program extracts one image from a 4D sequence. It can
be useful for diffusion MRI image analysis.

btkFCMClassification : Fuzzy C-means classification algorithm.

btkFSLToITKTransform : Convert a FSL transform to the ITK standard transform (− − inverse

do the opposite).

btkGenerateSimulatedFiber : Generate a simulated fiber from coordinates of points stored into a
text file.

btkGenerateVtkFileFromFiberDataTextFiles : Generate a VTK file of fibers from data stored
into several text files, and visualize it.

btkHistogramMatching : Normalize the grayscale values of one image using a reference image by
histogram matching (ITK filter: HistogramMatchingImageFilter).

btkImageGaussianFilter : Apply a gaussian filter on an image (ITK filter: DiscreteGaussianImage-
Filter).

btkImageHistogram : Analysis of images through histograms (It can save into text files histogram,
cumulative distribution function (cdf) and inverse-cdf of an image).

btkImageInjection This program performs the injection of a set of images with an already existing set
of transformations. This avoids the need to perform a new image reconstruction (computationally
expensive) after modification of the input images (some filtering for example) or an involuntary
deletion of the reconstructed image.

Recommended usage: btkImageInjection -i ana01.nii.gz · · · -i anaN.nii.gz -m mask01.nii.gz

· · · -m maskN.nii.gz -t transform01.txt · · · -t transformN.txt -o ana reconstructed.nii.gz

--mask

btkImageMorphologicalClosing : Greyscale Morphological Closing by a ball structuring element
(ITK filter: GrayscaleMorphologicalClosingImageFilter).

16

btkImageMorphologicalTopHat : Greyscale Morphological Top Hat by a ball structuring element.

btkImageResampling : Resample an image using: 1) a reference image (better option) or 2) specific
size or spacing (mainly based on ITK filter: ResampleImageFilter)

btkImageSimilarity : Calculates mean square error, mutual information, normalized correlation and
normalized mutual information of two images A and B. The use of a mask is possible.

btkImageSubtract : Pixel-wise subtraction of two image, or one image and a constant (ITK filter:
SubtractImageFilter).

Recommended usage: btkImageSubtract-i ana01.nii.gz -i ana02.nii.gz -o substraction image.nii.gz

or btkImageSubtract -i ana.nii.gz -c value -o substraction image.nii.gz

btkInverseDisplacementField : Compute the inverse of a displacement field (ITK filter: InverseDis-
placementFieldImageFilter)

Recommended usage: btkInverseDisplacementField -i field.nii.gz -o inverse field.nii.gz

btkIteratedBackProjection : Apply iterated back projection to high resolution image using one low
resolution image.

btkMajorityVoting : Compute label map using majority voting rule.

btkMidwayHistogramEqualization : Perform midway histogram equalization for a set of 3D images
(cf Delon JMIV 2004).

btkModifyImageUsingLookUpTable This program modifies one image using a look up table defined
in a ascii file (2 columns, one for the original values, one for the final values). It can be useful to
relabel a segmented image.

btkNiftiToNrrd This program convert a diffusion sequence in nifti format6 to the nrrd format (*.nhdr).

Recommended usage: btkNiftiToNrrd -i input.nii.gz -o output.nhdr

btkNrrdToNifti This program convert an image from Nrrd file (*.nhdr and *.nrrd) to a Nifti file (*.nii
or *.nii.gz). The conversion of a DWI image is possible by using the option --dwi.

Recommended usage: btkNrrdToNifti -i input.nhdr -o output.nii.gz.

Recommended usage for DWI sequence: btkNrrdToNifti --dwi -i input.nhdr -o output.nii.gz.

btkPSNR : Compute the PSNR between an input image and a reference image.

btkPrintImageInfo : Prints image information (size, origin, spacing, directions, anatomical orienta-
tion, pixel type).

btkProbabilityMapNormalization : Normalize in a voxelwise manner a set of (positive) probability
maps.

btkReconstructionComparisonTool : Compare several reconstruction methods: creates a label im-
age explaining which reconstructed image is the best at each voxel.

btkRegisterDiffusionToAnatomicalData This program registers a DW sequence to an anatomical
image.

btkReorientDiffusionSequenceToStandard Reorients a DW sequence to the standard orientation.
This is necessary with fetal images since the fetus is in a random orientation with respect to the
scanner. This is particularly important in DWI because colormaps lack of significance, which makes
difficult the identification of specific bundles.

6Currently there is no nifti standard for DWI, so DW images are saved as a standard nifti sequence (*.nii, *.nii.gz) and
two text files containing the b-values (.bval) and the gradient directions (.bvec).

17

(a) (b) (c)

Figure 10: Example of an anatomical reconstruction of a fetal brain by using btkImageReconstruction.
(a) axial, (b) coronal, and (c) sagital view.

(a) (b)

Figure 11: Placement of landmarks by using Slicer. (a) axial slice, (b) 3D view.

Recommended usage: btkReorientDiffusionSequenceToStandard -i dwi.nii.gz -o dwi reoriented.nii.gz

-l landmarks.fcsv.

landmarks is a landmarks file obtained as explained for btkReorientImageToStandard.

btkReorientImageToStandard This program reorients a image to the standard orientation. This
is necessary with fetal images since in general the fetus is in a random orientation with re-
spect to the scanner. Recommended usage: btkReorientImageToStandard -i ana.nii.gz -o

ana reoriented.nii.gz -l landmarks.fcsv. landmarks is a text file containing points that de-
fine the left-right and the posterior-anterior directions. The points l and r define the left → right
direction, and the points p and a define the posterior → anterior direction. Such file can be easily
generated by using Slicer (version 3) as follows:

1. Open the high-resolution image by using the Volume module.

2. Toogle on the visibility of all slices in the 3D view. This allows to identify the left and right
sides of the brain in the 2D views.

3. Place the landmarks l, r, p, and a in this order by using [p].

4. Save the file (*.fcsv) by using the menu File → Save.

btkResampleLabelsByInjection : Resample a set of label images using the injection method.

btkRescaleIntensity : Rescale the intensity values of an image using short values (possibility to use a
mask image).

18

http://www.slicer.org

btkSequenceNormalization : Writes a dwi sequence as a single image B0 + the diffusion images.
The new B0 is the mean of all B0 images in the original sequence, or a user-provided B0.

btkSetStandardCoorSystem : Sets the direction to the identity, and the origin to the center of the
image.

btkSimulateLowResolutionImage : Simulates a low resolution image from a high resolution image
(reconstructed, super-resolution, or acquired) and a transformation between both images (trans-
formation can be set or randomly computed) .

btkSimulateMotionSliceBySlice : Apply transformations on slices of input image.

btkSimulateStandardViewFromIsotropicImage : Simulates standard acquisitions (axial, coronal,
and sagital) from an isovoxel by using an observational model. This is useful for example to
assess the performance of reconstruction algorithms according to the subsampling factor (the re-
constructed image from the simulated images is then compared to the isovoxel image).

btkSimulateStandardViewsFromImage : Compute a low resolution image from a high resolution
image by using a generative model (old version of btkSimulateStandardViewFromIsotropicImage)
.

btkTractDensityMap : Create tract density images using set of fibers as input.

btkTranslateImageOverTemplate : Usefull for the extraction mask pipeline, it will translate the
center of image (or barycenter of masked image) on the center of the template image.

btkWeightedSumOfAffineTransforms : Compute a weighted mean of affine transforms (no check
for normalized weights!).

btkWeightedSumOfImages : Compute a weighted mean of 3D images (no check for normalized
weights!).

19

Figure 12: Example of a render of three polydatas (axial, coronal, and sagital). btkSlicesMotionViewer.

5 Viewers

btkSlicesMotionViewer : Construct a VTK polydata wich outline the slice for each input. Transforms
can be given in output the option -r will open a render window. A typical use of this program is
to visualize slice by slice transformation onto volume. See figure 12.

Recommended usage: btkSlicesMotionViewer -i ana01.nii.gz · · · -i anaN.nii.gz

-t transform01.txt · · · -t transformN.txt -o PolyData01.vtk · · · -o PolyDataN.vtk -r

Note that the only required arguments are the inputs and outputs.

btkDiffusionViewer : Useful for diffusion dataset visualization (memory consuming). The option
--percent of sample points can be used to set the percent of points (of the number of voxels)
being sampled for modelling display. This can be useful for memory saving and spacing control
between model representations. An other useful option is the input mask (-m) used to mask a part
of the image. Once the display window is opened, you can move the slice up and down by using
the corresponding arrows of your keyboard. To display the mean directions and the modelling, you
can use respectively the touch ’d’ and ’m’ of your keyboard. You can move the view by pointing
the mouse outside of the image and then moving the mouse while keeping the left button of the
mouse pressed.

Example usage: btkDiffusionViewer -i dwi.nii.gz -m mask.nii.gz

Acknowledgment

The research leading to these results has received funding from the European Research Council under the Euro-
pean Communitys Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 207667).

References

[1] B. Caldairou, N. Passat, P. Habas, C. Studholme, M. Koob, J. . Dietemann, and F. Rousseau. Data-driven
cortex segmentation in reconstructed fetal mri by using structural constraints. In Computer Analysis of

Images and Pattern - CAIP 2011, volume 6854 of Lecture Notes in Computer Science, pages 503–511, 2011.

[2] P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann, and C. Barillot. An optimized blockwise non local
means denoising filter for 3d magnetic resonance images. IEEE Trans. Medical Imaging, 27(4):425–441, 2008.

[3] M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche. Regularized, fast, and robust analytical q-ball
imaging. Magnetic Resonance in Medicine, 58(3):497–510, 2007.

[4] E. Oubel, M. Koob, C. Studholme, J. Dietemann, and F. Rousseau. Reconstruction of scattered data in fetal
diffusion mri. Medical Image Computing and Computer-Assisted Intervention, 2010.

[5] J. Pontabry, F. Rousseau, Oubel E., Studholme C., Koob M., and J.-L. Dietemann. Probabilistic tractography
using q-ball imaging and particle filtering: Application to adult and in-utero fetal brain studies. Medical Image

Analysis, 17(3):297–310, 2013.

20

[6] J. Pontabry, F. Rousseau, M. Schweitzer, C. Studholme, M. Koob, and J.-L. Dietemann. Longitudinal
probabilistic atlas of the fetal brain. In Nouvelles méthodologies en imagerie du vivant, 2012.

[7] F. Rousseau, O.A. Glenn, B. Iordanova, C. Rodriguez-Carranza, D.B. Vigneron, J.A. Barkovich, and
C. Studholme. Registration-based approach for reconstruction of high-resolution in utero fetal MR brain
images. Acad Radiol, 13(9):1072–1081, Sep 2006.

[8] F. Rousseau, P. Habas, and C. Studholme. A supervised patch-based approach for human brain labeling.
IEEE Transactions on Medical Imaging, 30(10):1852–1862, Oct 2011.

21

	Introduction
	Copyright
	Installation
	Dependencies
	Download and compile the BTK sources

	The BTK pipelines
	Image conversion
	Anatomical image reconstruction
	Reconstruction of the diffusion sequence
	Tractography

	Applications
	Denoising coupe2008
	Anatomical reconstruction
	Anatomical segmentation
	Reconstruction of DW sequences oubelreconstruction2010
	Tractography pontabryprobabilistic2011
	Atlas construction pontabry2012longitudinal
	Mask Extraction
	Fiber tracts Clustering

	Utilities
	btkApplyMaskToImage
	btkApplyTransformationToImage
	btkAverage3DImages
	btkAverageImagesWithReference
	btkBinarizeLabels
	btkBinarizeMask
	btkBinarizeTissueProbabilityMaps
	btkColorFiberTractsByOrientation
	btkComputeChamferDistance
	btkComputeCoefficientOfDeterminationForAtlas
	btkComputeFeatureSelectionResiduals
	btkComputeOverlap
	btkComputeSoftMaskUsingOrthogonalImages
	btkConvertGradientTable
	btkCropImageUsingMask
	btkDifferentialBiasCorrection
	btkDiffusionScalarMeasurement
	btkDistanceBetweenBinaryImages
	btkExtractMaskUsingBoundingBox
	btkExtractOneImageFromSequence
	btkFCMClassification
	btkFSLToITKTransform
	btkGenerateSimulatedFiber
	btkGenerateVtkFileFromFiberDataTextFiles
	btkHistogramMatching
	btkImageGaussianFilter
	btkImageHistogram
	btkImageInjection
	btkImageMorphologicalClosing
	btkImageMorphologicalTopHat
	btkImageResampling
	btkImageSimilarity
	btkImageSubtract
	btkInverseDisplacementField
	btkIteratedBackProjection
	btkMajorityVoting
	btkMidwayHistogramEqualization
	btkModifyImageUsingLookUpTable
	btkNiftiToNrrd
	btkNrrdToNifti
	btkPSNR
	btkPrintImageInfo
	btkProbabilityMapNormalization
	btkReconstructionComparisonTool
	btkRegisterDiffusionToAnatomicalData
	btkReorientDiffusionSequenceToStandard
	btkReorientImageToStandard
	btkResampleLabelsByInjection
	btkRescaleIntensity
	btkSequenceNormalization
	btkSetStandardCoorSystem
	btkSimulateLowResolutionImage
	btkSimulateMotionSliceBySlice
	btkSimulateStandardViewFromIsotropicImage
	btkSimulateStandardViewsFromImage
	btkTractDensityMap
	btkTranslateImageOverTemplate
	btkWeightedSumOfAffineTransforms
	btkWeightedSumOfImages

	Viewers
	btkSlicesMotionViewer
	btkDiffusionViewer

