
Stage 2 – Calculate Connectivity Matrices 
This stage creates connectivity matrices (one per participant/repeated condition).  
For block-design task fMRI, the toolbox will compute connectivity matrices for each user-
specified condition after dividing up the timeseries by condition. In order to compensate for 
HDR-related delay, timeseries are first deconvolved (using SPM's method), allowing for division 
at actual onset/offset times. Detrending within each block is available. Four measures of connectivity are available: Pearson correlation, 
Partial correlation, Mutual information, & Robust (bendcorr) Correlation.  
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Graph Theory & Psychopathology 
There is increasing agreement that that psychopathology is best 
understood as disturbances in brain networks (Insel, 2010). The recent 
application of graph theory to clinical neuroscience allows network 
pathology to be studied in an increasingly sophisticated manner. 
Graph-theoretic topological properties provide insight into the 
organization of networks and the role of regions within a network, and 
can reduce the incredibly large search space of brain networks in a 
meaningful manner (Rubinov & Sporns, 2010). Thus, graph theory has 
the potential to greatly expand knowledge of pathology-related network 
disturbance, enriching our understanding of etiological pathways.  
 
Categories of topological graph properties include: 
Segregation – the degree of optimization for specialized processing 
to occur within densely interconnected groups of nodes. Properties 
include: Clustering Coefficient, Local Efficiency, Transitivity  
Integration – the degree to which a network can rapidly combine 
specialized information across distributed nodes. Properties include: 
Characteristic Path Length, Global Efficiency  
Centrality (Influence) – the degree to which a particular node/edge 
facilitates intercommunication. Properties include: Node Degree/
Strength, Node/Edge Betweeness, Eigenvector Centrality, Pagerank 
Centrality, K-Coreness Centrality, Subgraph Centrality, Diversity 
Coefficient, Participation Coefficient, Within-Module Degree Z-Score  
Resilience – network (in)vulnerability to insult. Properties include: 
Assortativity 

Testing Relationships Between  
Graph Properties & Pathology 

Tools are available to calculate graph theoretic properties (e.g., Brain 
Connectivity Toolbox, Rubinov & Sporns, 2010). However, there is a 
dearth of tools available to test hypotheses about the relationship 
between graph properties and pathology in a (A) flexible and (B) valid 
manner. By flexible, we mean the ability to use of continuous and/or 
categorical predictors and between- and/or within-participant 
measures. By valid, we mean using non-parametric methods to 
calculate significance. Therefore, we developed the Graph Theoretic 
General Linear Model (GTG) MATLAB toolbox. The toolbox is freely 
available on NITRC: www.nitrc.org/projects/metalab_gtg 

Stage 1 – Preprocessing 
This stage accepts raw fMRI 4D timeseries data, performs 
preprocessing, and extracts a processed timeseries for each input 
ROI. Processing includes standard options: slice-timing 
correction, motion correction, polynomial detrending. To remove 
motion variance, Power et al. (2014)'s motion scrubbing and Patel 
et al. (2014)'s wavelet despiking procedures are available.  

Several options are available for partialing nuisance signals, 
including mean global, white matter, and ventricular signals, and 
their (2nd order) 1st derivative. Partialing of motion correction 
parameters is available, along with the t-1 parameters, squared 
parameters, and the (2nd order) 1st derivatives. It is also possible to 
partial signal from only local white  matter (within a 45mm sphere, Jo et al., 2013). The first 5 principal components of white matter and 
ventricular signal (5 components each) can be partialled instead of the mean (Muschelli et al., 2014). Chen et al. (2012)’s Global Negative 
Index (GNI) can be calculated and (automatically) used determine whether it is necessary to partial global signal. Finally, Saad et al. 
(2013)'s measure of average brain-wide correlations (GCOR) can be calculated (useful as a GLM covariate).  

Stage 3 – Calculate Graph Properties 
This stage calculates graph theoretic properties for each participant/
repeated level using the Brain Connectivity Toolbox. The measure of 
connectivity does not matter (e.g., correlation, diffusion tract strength).  
Properties are computed for both positive and negative weights from 
fully-connected and/or thresholded networks. For thresholded 
networks, properties are computed across a set of density thresholds. 
The minimum density is chosen such that the presence of disconnected 
networks is not highly correlated with variables of interest. Specifically, the user specifies variables of interest, and groups are created by 
stratifying these variables. Mean networks are created for each (stratification) group, and the minimum density at which that network 
remains connected is identified. This is done for each group (across each variable, across all selected variables) and for the overall mean 
network, and the maximum of these minima is chosen. An area under the curve (AUC) across density levels is computed for each property.  

Stage 4 – Run GLM 
This stage calculates GLMs on graph properties. Continuous & categorical between-
participant predictors and a categorical within-participant predictor are accepted. When 
using a within-participant predictor, it is possible to test both main effects and between 
X within interactions. It is possible to test the significance of individual predictors, 
contrasts between predictors, or F-tests across a set of predictors.  
Along with Ordinary Least Squares, it is possible to use Robust or Trimmed Least 
Squares GLMs.  
Significance is determined via non-parametric permutation tests using the method of 
Freedman & Lane (1983) to deal with covariates.  
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