
1June 30, 2008 NITRC Meeting

Balancing the Needs of Expert 
and Novice Users

Daniel Y. Kimberg
University of Pennsylvania



2June 30, 2008 NITRC Meeting

Multiple lightweight interfaces

For many (but not all) programs, different kinds 
of interfaces make sense for different kinds 
of users, even for the same application:

command line interfaces
interactive text interfaces
config file interfaces
graphical user interfaces



3June 30, 2008 NITRC Meeting

Are tradeoffs necessary?

If you're only going to develop one interface:
− there's a common core of basic things both kinds 

of users generally need exposed
− you don't have to make advanced functions 
inaccessible to support novices

− you don't have to make advanced functions 
prominent to support experts

Supporting complex functionality means 
exposing stuff that most users will never use.
But why limit yourself to just one interface?



4June 30, 2008 NITRC Meeting

New interfaces galore

Any program that either takes a config file or 
exposes an elaborate command line 
interface can be given multiple additional 
interfaces trivially.
− UIs written in un-cool languages
− UIs that retrieve and organize the data
− UIs that bridge the gap between metadata 

systems and metadata-naive processing tools
− UIs that take care of a variable amount of the 

prep work and that know about local usage
− shell scripts and aliases



5June 30, 2008 NITRC Meeting

Code Level

For simple, modular tools, we can separate 
interfaces and guts
− keep the guts in a nicely encapsulated library
− develop as many simple interfaces as we like
− as long as there's a detailed text interface, 

anyone can develop a custom interface
It's helpful in transitioning users to have GUIs 
produce the same config files (or display the 
command lines) that are consumed by the 
final program in the chain, even if they don't 
do the work that way.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

