A Pypelined Approach to Neuroimaging Data Analysis

Satrajit Ghosh and Susan Whitfield-Gabrieli

Massachusetts Institute of Technology
Acknowledgements

People

Alfonso Nieto-Castanon, PhD
Jason A. Tourville, PhD
Oliver Hinds, PhD
Mark Pearrow

Institutions

Massachusetts Institute of Technology
Speech communication group, Research Laboratory of Electronics
Athinoula A. Martinos Imaging Center, McGovern Institute for Brain Research

University of California, Berkeley

Boston University
SpeechLab, Department of Cognitive and Neural Systems

Massachusetts General Hospital
Athinoula A. Martinos Center for Biomedical Imaging

NIPy team

University of California, Berkeley
Dav Clark
Matthew Brett, MD
Christopher Burns
Mark D’Esposito
Cindee Madison
Jarrod Millman
Fernando Perez, PhD

Neurospin, Sarclay, France
Jean-Baptiste Poline, PhD
Alexis Roche, PhD
Bertrand Thirion, PhD
Gael Varoquaux, PhD

Stanford University
Jonathon Taylor, PhD

University of Magdeburg, Germany
Michael Hanke

Rutgers University Newark, USA
Yaroslav O. Halchenko

and the list goes on.

Funding

National Institute for Biomedical Imaging and Bio-engineering
R03 EB008673
PIs: Satrajit Ghosh, Susan Whitfield-Gabrieli, MIT
RAPIDART
Why neuroimaging pipelines?

Why in Python?
Why another batch scripting system?

Architecture

Data Interoperability
Region-of-interest Analysis of Parcellated Imaging Data
Reducing inter-subject anatomical variability

Artifact detection Tools
Quality assurance

MATLAB-based
SPM-focused
Problem 1. Data formats

Neuroimaging Pypelines

<table>
<thead>
<tr>
<th>SPM</th>
<th>FSL</th>
<th>FreeSurfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>nii (3D/4D)</td>
<td>nii.gz/nii (4D)</td>
<td>mgz</td>
</tr>
<tr>
<td>img/hdr (analyze)</td>
<td></td>
<td>nii</td>
</tr>
<tr>
<td>MAT (matlab)</td>
<td>C++</td>
<td>C++</td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Neuroimaging Pipelines

Wishlist

Motion Correction
Coregistration
Normalization
Smoothing
Model Specification
Model Estimation
Statistical Inference
Neuroimaging Pipelines

Optimized processing

- Motion Correction
- Coregistration
- Normalization
- Smoothing
- Model Specification
- Model Estimation
- Statistical Inference

Wishlist

Compare algorithms

- Motion Correction
- Coregistration
- Normalization

Smoothing
- Smoothing SPM
- Smoothing FreeSurfer

Normalization
- Normalization ANTS

Coregistration
- Coregistration SPM

Model Specification
- Model Specification NIPY

Model Estimation
- Model Estimation FMRISTAT

Model Estimation
- Model Estimation

Statistical Inference

Thursday, June 18, 2009
Neuroimaging Pipelines

Optimized processing:
- Motion Correction
- Coregistration
- Normalization
- Smoothing
- Model Specification
- Model Estimation
- Statistical Inference

Compare algorithms:
- Motion Correction
- Coregistration
- Normalization
- Smoothing
- Model Specification
- Model Estimation
- Statistical Inference

Custom Software:
- Preprocessing
- Model Specification
- Model Estimation
- Statistical Inference

Thursday, June 18, 2009
Neuroimaging Pypelines

• High-level language
• Well formed programming language
• Cross-platform
• Free
• Extensive community, commercial support and use
• Strong numerical and robust scientific computing packages (numpy, scipy)
• Integrates well with other software (PyR2)
• Interactive-command line
• Automatic doc generation

Image courtesy
Dr. Arno Klein

Thursday, June 18, 2009
• Interoperability!
• Extensible framework based on a high-level language
• Integrates different neuroimaging software (FSL, SPM, etc.)
• Lightweight
• Provides embarrassing and finer levels of parallelism
• Minimizes data redundancy
• Supports evaluation of the impact of different parameters
<table>
<thead>
<tr>
<th>Neuroimaging Pypelines</th>
<th>Approach</th>
</tr>
</thead>
</table>

Target three levels of users:
- those who like to drag and drop
- those who like to type config files
- those who like to code
Target three levels of users:
- those who like to drag and drop
- those who like to type config files
- those who like to code
• Processing pipeline represented as a directed acyclic graph (DAG)
• Leverages graph algorithms for scheduling
• Each process defines its own inputs and outputs
• Provides wrappers/interfaces to call external software (SPM, FSL)
• Can iterate pipeline-segment over parameterizations of modules
• Separates data specification and code execution
• Generalized framework for neuroimaging analysis
• Integrates several neuroimaging software
• Python-based (easy to learn, easy to use) – really
• Pedagogical (you should know your parameters)
• Engages the community
• Go to Matthew Brett’s talk tomorrow
Neuroimaging Pypelines

Open questions

Problem 1. Data Formats
Dicom, Nifti, Analyze, MATLAB, Gifti, MGZ, VTK

Problem 2. Metadata
What metadata should be carried along with the data?
What is essential?

Problem 3. Ontology
What is our vocabulary?
How are all the relations stored?