A Pypelined Approach to Neuroimaging Data Analysis

Satrajit Ghosh and Susan Whitfield-Gabrieli

Massachusetts Institute of Technology

Acknowledgements

People

Alfonso Nieto-Castanon, PhD Jason A. Tourville, PhD Oliver Hinds, PhD Mark Pearrow **Massachusetts Institute of Technology**

Speech communication group, Research Laboratory of Electronics

Athinoula A. Martinos Imaging Center, McGovern Institute for Brain Research

University of California, Berkeley

Boston University

Institutions

SpeechLab, Department of Cognitive and Neural Systems

Massachusetts General Hospital

Athinoula A. Martinos Center for Biomedical Imaging

Funding

National Institute for Biomedical Imaging and Bio-engineering R03 EB008673

Pls: Satrajit Ghosh, Susan Whitfield-Gabrieli, MIT

NIPy team

University of California, Berkeley

Dav Clark

Matthew Brett, MD

Christopher Burns

Mark D'Esposito

Cindee Madison

Jarrod Millman

Fernando Perez, PhD

Neurospin, Sarclay, France

Jean-Baptiste Poline, PhD

Alexis Roche, PhD

Bertrand Thirion, PhD

Gael Varoquaux, PhD

Stanford University

Jonathon Taylor, PhD

University of Magdeburg, Germany

Michael Hanke

Rutgers University Newark, USA

Yaroslav O. Halchenko

and the list goes on.

Outline

RAPIDART
Why neuroimaging pipelines?

Why in Python? Why another batch scripting system?

Architecture

Data Interoperability

RAPIDART

Region-of-interest Analysis of Parcellated Imaging Data Reducing inter-subject anatomical variability

ARtifact detection Tools

Quality assurance

MATLAB-based SPM-focused

Data formats

spm nii (3D/4D) img/hdr (analyze) MAT (matlab) FSL nii.gz/nii (4D) C++ FreeSurfer mgz nii

MATLAB

Problem I. Data formats

Wishlist

Motion Correction

Coregistration

Normalization

Smoothing

Model Specification

Model Estimation

Statistical Inference

Wishlist

Optimized processing

Motion Correction

Coregistration

Normalization

Smoothing

Model Specification

Model Estimation

Statistical Inference

Motion Correction **FSL** Coregistration **SPM Normalization ANTS Smoothing** FreeSurfer Model **Specification** NIPY Model **Estimation**

FMRISTAT

Wishlist

Motion Correction

Coregistration

Normalization

Smoothing

Model Specification

Model Estimation

Statistical Inference

Optimized processing

Motion Correction FSL

Coregistration SPM

Normalization ANTS

Smoothing FreeSurfer

Model
Specification
NIPY

Model Estimation FMRISTAT

Compare algorithms

Motion
Correction

Coregistration

Normalization

Smoothing
SPM

FreeSurfer

Model Specification

Model Estimation

Model Specification

Model Estimation

Wishlist

Motion Correction

Coregistration

Normalization

Smoothing

Model **Specification**

Model **Estimation**

Statistical Inference

Optimized processing

Motion Correction **FSL**

Coregistration **SPM**

Normalization ANTS

> **Smoothing FreeSurfer**

Model **Specification NIPY**

Model **Estimation FMRISTAT**

Compare algorithms

Motion Correction Coregistration **Normalization Smoothing Smoothing FreeSurfer SPM**

Model **Specification**

Model **Estimation** Software

Preprocessing

Custom

Model **Specification**

Model **Estimation**

Statistical Inference

Model **Specification**

> Model **Estimation**

Python

- High-level language
- Well formed programming language
- Cross-platform
- Free
- Extensive community, commercial support and use
- Strong numerical and robust scientific computing packages (numpy, scipy)
- Integrates well with other software (PyR2)
- Interactive-command line
- Automatic doc generation

Image courtesy Dr. Arno Klein

Replication

- Interoperability!
- Extensible framework based on a high-level language
- Integrates different neuroimaging software (FSL, SPM, etc.,.)
- Lightweight
- Provides embarrassing and finer levels of parallelism
- Minimizes data redundancy
- Supports evaluation of the impact of different parameters

Approach

Target three levels of users:

- those who like to drag and drop
- those who like to type config files
- those who like to code

Approach

Target three levels of users:

- those who like to drag and drop
- those who like to type config files
- those who like to code

Architecture

- Processing pipeline represented as a directed acyclic graph (DAG)
- Leverages graph algorithms for scheduling
- Each process defines its own inputs and outputs
- Provides wrappers/interfaces to call external software (SPM, FSL)
- Can iterate pipeline-segment over parameterizations of modules
- Separates data specification and code execution

Summary

- Generalized framework for neuroimaging analysis
- Integrates several neuroimaging software
- Python-based (easy to learn, easy to use) really
- Pedagogical (you should know your parameters)
- Engages the community
- Go to Matthew Brett's talk tomorrow

Open questions

Problem I. Data Formats

Dicom, Nifti, Analyze, MATLAB, Gifti, MGZ, VTK

Problem 2. Metadata

What metadata should be carried along with the data?

What is essential?

Problem 3. Ontology

What is our vocabulary?

How are all the relations stored?