Data interoperability of DTI-TK for DTI analysis

&

A preview of ITK-SNAP 2.0

Gary Hui Zhang, Paul A Yushkevich, and James C Gee

Penn Image Computing & Science Laboratory (PICSL)
Department of Radiology, University of Pennsylvania
Data interoperability of DTI-TK for DTI analysis
A typical DTI analysis pipeline for a single subject
A typical DTI analysis pipeline for a single subject

1. Diffusion-Weighed Images
2. Diffusion-Tensor Images
3. Fiber Tractography
4. White Matter (WM) Tracts
5. Feature Computation
6. Measures of WM Tracts
A typical DTI analysis pipeline for a single subject

- Diffusion-Weighted Images
- Tensor reconstruction
- Diffusion-Tensor Images
- Fiber Tractography
- White Matter (WM) Tracts
- Feature Computation
- Measures of WM Tracts
A typical DTI analysis pipeline for a single subject

- Diffusion-Weighed Images
 - Tensor reconstruction
 - Diffusion-Tensor Images
 - Fiber Tractography
 - White Matter (WM) Tracts
 - Feature Computation
 - Measures of WM Tracts
A typical DTI analysis pipeline for a single subject

1. Diffusion-Weighed Images
2. Tensor reconstruction
3. Diffusion-Tensor Images
4. Fiber Tractography
5. White Matter (WM) Tracts
6. Feature Computation
7. Measures of WM Tracts
A typical DTI analysis pipeline for a single subject

Diffusion-Weighted Images

Tensor reconstruction

Diffusion-Tensor Images

Fiber Tractography

White Matter (WM) Tracts

Feature Computation

Measures of WM Tracts
A typical DTI analysis pipeline for a single subject

- Diffusion-Weighed Images
 - Tensor reconstruction
 - Diffusion-Tensor Images
 - Fiber Tractography
 - White Matter (WM) Tracts
 - Feature Computation
 - Measures of WM Tracts
A typical DTI analysis pipeline for a single subject

- Diffusion-Weighed Images
 - Tensor reconstruction
 - Diffusion-Tensor Images
 - Fiber Tractography
 - White Matter (WM) Tracts
 - Feature Computation
 - Measures of WM Tracts
A typical DTI analysis pipeline for a single subject

Diffusion-Weighted Images

Tensor reconstruction

Diffusion-Tensor Images

Fiber Tractography

White Matter (WM) Tracts

Feature Computation

Measures of WM Tracts
A typical DTI analysis pipeline for a single subject

- Diffusion-Weighed Images
- Tensor reconstruction
- Diffusion-Tensor Images
- Fiber Tractography
- White Matter (WM) Tracts
- Feature Computation
- Measures of WM Tracts
A typical DTI analysis pipeline for a single subject

Diffusion-Weighted Images

Tensor reconstruction

Diffusion-Tensor Images

Fiber Tractography

White Matter (WM) Tracts

Feature Computation

Measures of WM Tracts
A typical DTI analysis pipeline for group studies

Population studies ← Spatial Normalization
How do existing DTI tools support DTI analysis?

Each subject
How do existing DTI tools support DTI analysis?

Each subject:

- Diffusion-Weighted Images
- Tensor reconstruction
- Diffusion-Tensor Images
- Fiber Tractography
- White Matter (WM) Tracts
- Feature Computation
- Measures of WM Tracts
- Spatial Normalization

Camino: Largest collection of tensor reconstruction algorithms & HARDI
How do existing DTI tools support DTI analysis?

- Each subject
 - Diffusion-Weighed Images
 - Tensor reconstruction
 - Diffusion-Tensor Images
 - Fiber Tractography
 - White Matter (WM) Tracts
 - Feature Computation
 - Measures of WM Tracts
 - Spatial Normalization

- Camino
 - Largest collection of tensor reconstruction algorithms & HARDI

- FSL
 - Probabilistic tractography & Tract-based spatial statistics (TBSS)
How do existing DTI tools support DTI analysis?

- **Diffusion-Weighed Images**
- **Tensor reconstruction**
- **Diffusion-Tensor Images**
- **Fiber Tractography**
- **White Matter (WM) Tracts**
- **Feature Computation**
- **Measures of WM Tracts**
- **Spatial Normalization**

Tools

- **Camino**
 - Largest collection of tensor reconstruction algorithms & HARDI
- **FSL**
 - Probabilistic tractography & Tract-based spatial statistics (TBSS)
- **DTIStudio**
 - Interactive deterministic tractography & Tract-specific ROI analysis
How do existing DTI tools support DTI analysis?

- **Diffusion-Weighed Images**
 - **Tensor reconstruction**
 - **Diffusion-Tensor Images**
 - **Fiber Tractography**
 - **White Matter (WM) Tracts**
 - **Feature Computation**
 - **Measures of WM Tracts**
 - **Spatial Normalization**

- **Camino**
 - Largest collection of tensor reconstruction algorithms & HARDI

- **FSL**
 - Probabilistic tractography & Tract-based spatial statistics (TBSS)

- **DTIStudio**
 - Interactive deterministic tractography & Tract-specific ROI analysis

- **DTI-TK**
 - DTI spatial normalization + atlas construction & Tract-specific analysis
DTI ToolKit: A Spatial Normalization and Atlas Construction Toolkit

Optimized for Examining White Matter Morphometry Using DTI Data.

Control Population

Subject 1

Subject 2

Subject 3

Subject 4

Disease Population

Subject 1

Subject 2

Subject 3

Subject 4

More discriminating image features

1

Better Registration

Atlas

Closest to the average of the populations in shape and features

2

Spatial normalization and atlas construction

White matter morphometry

More discriminating image features

1

Better Registration

Atlas

Closest to the average of the populations in shape and features

2

Tensor-based registration leverages rich discriminating features afforded by DTI

1

Population-specific white matter atlas with shape-averaging

2

T1

DTI

For download, visit http://www.nitrc.org/projects/dtitk

Sunday, June 21, 2009
DTI-TK Quick Look Plugin for Mac OSX

About DTI-TK Quick Look Plugin
This plugin uses the Mac OS X Leopard’s built-in innovative Quick Look framework to enable a quick assessment of any 3-dimensional image volume in the supported medical image formats (NIfTI / Analyze / FreeSurfer) directly from the Finder. Using the Finder’s Cover Flow mode, a large collection of medical images can be browsed through and quickly inspected just as easy as flipping through your photos. Furthermore, a large number of images can be compared side-by-side by selecting them together in the Finder, then pressing the space bar to bring up the Quick Look preview mode.

System Requirements
Mac OS X 10.5 or later

Download Details

<table>
<thead>
<tr>
<th>Company</th>
<th>university of pennsylvania</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>1.7.3</td>
</tr>
<tr>
<td>Post Date</td>
<td>June 8, 2009</td>
</tr>
</tbody>
</table>
DTI-TK Quick Look Plugin: Cover Flow Mode
DTI-TK Quick Look Plugin: Multi-Volume Preview
Data interoperability of diffusion tensor images

\[D = \begin{pmatrix} D_{xx} & D_{yx} & D_{zx} \\ D_{yx} & D_{yy} & D_{zy} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix} = \lambda_1 e_1 e_1^T + \lambda_2 e_2 e_2^T + \lambda_3 e_3 e_3^T \]
Data interoperability of diffusion tensor images

\[
\mathbf{D} = \begin{pmatrix}
D_{xx} & D_{yx} & D_{zx} \\
D_{yx} & D_{yy} & D_{zy} \\
D_{zx} & D_{zy} & D_{zz}
\end{pmatrix}
= \lambda_1 \mathbf{e}_1 \mathbf{e}_1^T + \lambda_2 \mathbf{e}_2 \mathbf{e}_2^T + \lambda_3 \mathbf{e}_3 \mathbf{e}_3^T
\]

matrix representation
Data interoperability of diffusion tensor images

\[
\mathbf{D} = \begin{pmatrix}
D_{xx} & D_{yx} & D_{zx} \\
D_{yx} & D_{yy} & D_{zy} \\
D_{zx} & D_{zy} & D_{zz}
\end{pmatrix}
\]

\[
= \lambda_1 \mathbf{e}_1 \mathbf{e}_1^T + \lambda_2 \mathbf{e}_2 \mathbf{e}_2^T + \lambda_3 \mathbf{e}_3 \mathbf{e}_3^T
\]

- matrix representation
- eigensystem representation
Data interoperability of diffusion tensor images

\[D = \begin{pmatrix} D_{xx} & D_{yx} & D_{zx} \\ D_{yx} & D_{yy} & D_{zy} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix} \]

\[= \lambda_1 e_1 e_1^T + \lambda_2 e_2 e_2^T + \lambda_3 e_3 e_3^T \]

data interoperability of diffusion tensor images

\text{DTI-TK} \quad \text{(} D_{xx}, D_{yx}, D_{yy}, D_{zx}, D_{zy}, D_{zz} \text{)}

lower triangular

This is the NIfTI Tensor standard

matrix representation

eigensystem representation
Data interoperability of diffusion tensor images

\[D = \begin{pmatrix} D_{xx} & D_{yx} & D_{zx} \\ D_{yx} & D_{yy} & D_{zy} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix} \]

\[= \lambda_1 e_1 e_1^T + \lambda_2 e_2 e_2^T + \lambda_3 e_3 e_3^T \]

\[\text{DTI-TK} \quad (D_{xx}, D_{yx}, D_{yy}, D_{zx}, D_{zy}, D_{zz}) \]

\[\text{Camino} \quad D_{xx}, D_{yy}, D_{zz}, D_{yx}, D_{zx}, D_{zy} \]

This is the NIfTI Tensor standard

lower triangular

individual NIfTI scalar files
Data interoperability of diffusion tensor images

\[D = \begin{pmatrix}
 D_{xx} & D_{yx} & D_{zx} \\
 D_{yx} & D_{yy} & D_{zy} \\
 D_{zx} & D_{zy} & D_{zz}
\end{pmatrix} \]

\[= \lambda_1 e_1 e_1^T + \lambda_2 e_2 e_2^T + \lambda_3 e_3 e_3^T \]

\[\text{DTI-TK} \]
\[(D_{xx}, D_{yx}, D_{yy}, D_{zx}, D_{zy}, D_{zz}) \]
This is the NIfTI Tensor standard
lower triangular

\[\text{Camino} \]
\[D_{xx}, D_{yy}, D_{zz}, D_{yx}, D_{zx}, D_{zy} \]
individual NIfTI scalar files

\[\text{FSL} \]
\[\lambda_1, \lambda_2, \lambda_3, e_1, e_2, e_3 \]
individual NIfTI scalar or vector files

\[(D_{xx}, D_{yx}, D_{zx}, D_{yy}, D_{zy}, D_{zz}) \]
or
upper triangular
Data interoperability of diffusion tensor images

\[D = \begin{pmatrix} D_{xx} & D_{yx} & D_{zx} \\ D_{yx} & D_{yy} & D_{zy} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix} \]

\[= \lambda_1 e_1 e_1^T + \lambda_2 e_2 e_2^T + \lambda_3 e_3 e_3^T \]

\[\text{matrix representation} \]

\[\text{eigensystem representation} \]

DTI-TK

\((D_{xx}, D_{yx}, D_{yy}, D_{zx}, D_{zy}, D_{zz})\)

lower triangular

This is the NIfTI Tensor standard

Camino

\[D_{xx}, D_{yy}, D_{zz}, D_{yx}, D_{zx}, D_{zy} \]

individual NIfTI scalar files

FSL

\[\lambda_1, \lambda_2, \lambda_3, e_1, e_2, e_3 \]

individual NIfTI scalar or vector files

\[\text{or} \quad (D_{xx}, D_{yx}, D_{zx}, D_{yy}, D_{zy}, D_{zz}) \]

upper triangular

DTIStudio

\[D_{xx}, D_{yy}, D_{zz}, D_{yx}, D_{zx}, D_{zy} \]

individual Analyze files for export

\[\text{or} \quad \text{FA}, e_1 \]

individual raw binary files for import

Data interoperability tools in DTI-TK
Data interoperability tools in DTI-TK

• Interoperability to Camino, FSL, and DTIStudio
Data interoperability tools in DTI-TK

- Interoperability to Camino, FSL, and DTIStudio
 - fully implemented, tested, and documented
Data interoperability tools in DTI-TK

- Interoperability to Camino, FSL, and DTIStudio
 - fully implemented, tested, and documented
- Benefits
Data interoperability tools in DTI-TK

• Interoperability to Camino, FSL, and DTIStudio
 • fully implemented, tested, and documented

• Benefits
 • Make the core capability of DTI-TK accessible to users of major DTI tools
Data interoperability tools in DTI-TK

- Interoperability to Camino, FSL, and DTIStudio
 - fully implemented, tested, and documented

- Benefits
 - Make the core capability of DTI-TK accessible to users of major DTI tools
 - Users can choose their favorite tools for tensor reconstruction
Data interoperability tools in DTI-TK

• Interoperability to Camino, FSL, and DTIStudio
 • fully implemented, tested, and documented

• Benefits
 • Make the core capability of DTI-TK accessible to users of major DTI tools
 • Users can choose their favorite tools for tensor reconstruction
 • Minimal adoption barrier for users with existing DTI analysis pipeline
Data interoperability tools in DTI-TK

• Interoperability to Camino, FSL, and DTIStudio
 • fully implemented, tested, and documented

• Benefits
 • Make the core capability of DTI-TK accessible to users of major DTI tools
 • Users can choose their favorite tools for tensor reconstruction
 • Minimal adoption barrier for users with existing DTI analysis pipeline
 • Access to new capability of DTI-TK, such as the tract-specific analysis.
Data interoperability tools in DTI-TK

- Interoperability to Camino, FSL, and DTIStudio
 - fully implemented, tested, and documented

- Benefits
 - Make the core capability of DTI-TK accessible to users of major DTI tools
 - Users can choose their favorite tools for tensor reconstruction
 - Minimal adoption barrier for users with existing DTI analysis pipeline
 - Access to new capability of DTI-TK, such as the tract-specific analysis.
 - Improve the quality of DTI analysis within the neuroimaging community
Data interoperability tools in DTI-TK

• Interoperability to Camino, FSL, and DTIStudio
 • fully implemented, tested, and documented

• Benefits
 • Make the core capability of DTI-TK accessible to users of major DTI tools
 • Users can choose their favorite tools for tensor reconstruction
 • Minimal adoption barrier for users with existing DTI analysis pipeline
 • Access to new capability of DTI-TK, such as the tract-specific analysis.
 • Improve the quality of DTI analysis within the neuroimaging community
 • Users can now choose the best available tool for each component in their analysis pipeline
Data interoperability tools in DTI-TK

• Interoperability to Camino, FSL, and DTIStudio
 • fully implemented, tested, and documented

• Benefits
 • Make the core capability of DTI-TK accessible to users of major DTI tools
 • Users can choose their favorite tools for tensor reconstruction
 • Minimal adoption barrier for users with existing DTI analysis pipeline
 • Access to new capability of DTI-TK, such as the tract-specific analysis.
 • Improve the quality of DTI analysis within the neuroimaging community
 • Users can now choose the best available tool for each component in their analysis pipeline
 • New techniques can be more easily compared to existing tools
A preview of ITK-SNAP 2.0
Overview of ITK-SNAP
Overview of ITK-SNAP

• ITK-SNAP is a software application used to **segment structures in 3D medical images**. It provides **semi-automatic segmentation** using active contour methods, as well as **manual delineation** and **image navigation**.
Overview of ITK-SNAP

- ITK-SNAP is a software application used to segment structures in 3D medical images. It provides semi-automatic segmentation using active contour methods, as well as manual delineation and image navigation.

- Key enhancements implemented for version 2.0
Overview of ITK-SNAP

- ITK-SNAP is a software application used to segment structures in 3D medical images. It provides semi-automatic segmentation using active contour methods, as well as manual delineation and image navigation.

- Key enhancements implemented for version 2.0
 - Full featured multi-session synchronized image navigation - enabling synchronized cursor, zoom and pan
Overview of ITK-SNAP

- ITK-SNAP is a software application used to segment structures in 3D medical images. It provides semi-automatic segmentation using active contour methods, as well as manual delineation and image navigation.

- Key enhancements implemented for version 2.0
 - Full featured multi-session synchronized image navigation - enabling synchronized cursor, zoom and pan
 - Full NIfTI support - enabling synchronized image navigation across multiple ITK-SNAP sessions even when images have oblique orientation
Overview of ITK-SNAP

• ITK-SNAP is a software application used to segment structures in 3D medical images. It provides semi-automatic segmentation using active contour methods, as well as manual delineation and image navigation.

• Key enhancements implemented for version 2.0
 • Full featured multi-session synchronized image navigation - enabling synchronized cursor, zoom and pan
 • Full NIfTI support - enabling synchronized image navigation across multiple ITK-SNAP sessions even when images have oblique orientation
 • Full featured multiple image overlay support - enabling multiple RGB or greyscale image overlay as well as greyscale to color mapping
Overview of ITK-SNAP

• ITK-SNAP is a software application used to segment structures in 3D medical images. It provides semi-automatic segmentation using active contour methods, as well as manual delineation and image navigation.

• Key enhancements implemented for version 2.0
 • Full featured multi-session synchronized image navigation - enabling synchronized cursor, zoom and pan
 • Full NIfTI support - enabling synchronized image navigation across multiple ITK-SNAP sessions even when images have oblique orientation
 • Full featured multiple image overlay support - enabling multiple RGB or greyscale image overlay as well as greyscale to color mapping
 • Enhanced support for manual segmentation via the new adaptive brush
Overview of ITK-SNAP

• ITK-SNAP is a software application used to **segment structures in 3D medical images**. It provides **semi-automatic segmentation** using active contour methods, as well as **manual delineation** and **image navigation**.

• Key enhancements implemented for version 2.0

 • Full featured multi-session synchronized image navigation - enabling synchronized cursor, zoom and pan

 • Full NIfTI support - enabling synchronized image navigation across multiple ITK-SNAP sessions even when images have oblique orientation

 • Full featured multiple image overlay support - enabling multiple RGB or greyscale image overlay as well as greyscale to color mapping

 • Enhanced support for manual segmentation via the new adaptive brush

 • User experience enhancement, including redesigned user interface, native file chooser, and automatic check for update
ITK-SNAP 2.0 Preview Demo

For download, visit http://www.itksnap.org
Acknowledgement

• DTI-TK
 • NIH grant: R03 EB009321
 • DTI-TK user community

• ITK-SNAP
 • NIH grant: R03 EB008200
 • Prof. Guido Gerig, original SNAP developers at UNC
 • ITK-SNAP user community

Thank you for your attention.