New Features and Tutorial

Graphar 2.02

GraphVar - SampleWorkspace		
General Settings Brain regions files File with Variables Colort Orbitate (Once Matricia	Network Construction Threshold Significant Relative Absolute SICE None Weights	Network Calculations Image: Community structure
Select Subjects (Conn Matrix) Create Connectivity Matrix Subjects CorrMatrix(CorrMatrix, Sample, 01.mat CorrMatrix(CorrMatrix, Sample, 02.mat CorrMatrix(CorrMatrix, CorrMatrix, Sample, 03.mat CorrMatrix(CorrMatrix, CorrMatrix, Sample, 04.mat CorrMatrix(CorrMatrix, CorrMatrix, Sample, 05.mat CorrMatrix(CorrMatrix, CorrMatrix, Sample, 05.mat CorrMatrix(CorrMatrix, CorrMatrix, Sample, 05.mat CorrMatrix(CorrMatrix, CorrMatrix, Sample, 01.mat CorrMatrix(CorrMatrix, CorrMatrix, Sample, 01.mat CorrMatrix(CorrMatrix, CorrMatrix, Sample, 01.mat CorrMatrix(CorrMatrix, Sample, 01.mat CorrMatrix, CorrMatrix, Sample, 01.mat CorrMatrix(CorrMatrix, Sample, 01.mat CorrMatrix, CorrMatrix, Sample, 01.mat Start: 12 End (remaining characters): 4 Corr Matrix Array CorrMatrix 0	 no change absolute weights negative weights to zero Network nodes / Brain areas Network thresholds Inferior temporal gyrus (Right) Cerebelum_Crus1_L Cerebelum_Crus2_L Cerebelum_Crus2_R Cerebelum_3_R Cerebelum_4_5_L Inferior temporal gyrus (Right) Cerebelum_3_R Cerebelum_4_5_L Generate randomized subject data (null model network) 	Brain graph metrics Select Dynamic Binary: Assortativity o Select Dynamic Binary: Assortativity o Select Dynamic Binary: Assortativity o connection: Number of fastest path - node i to node j Binary: Assortativity o connection: Duration of shortest path - node i to node j Binary: Assortativity o global: Temporal efficiency of dynamic network Binary: Clustering coe global: Temporal correlation coefficient of dynamic network Binary: Clustering coe local: Receive Centrality Image: Normalize graph local: Receive Centrality Image: Use random netwo Dynamic community flexibility: only with MULTISLICE affiliation vector Dynamic community promiscuity: only with MULTISLICE affiliation vector Summary: Variance over time
Graph Var Switch Workspace Open Previous Re	Raw Matrix (link wise) GLM Machi Raw matrix Select Dynamic Variables Oconnectivity Thr. r to z 05 Generate 045 Generate 035 Go 02 Go 041 Go 009 Generate 007 Generate 008 Generate 009 Generate 008 Generate 009 Generate 009 Generate 009 Generate 009 Generate 009 Generate	Summary: Standard Deviation Summary: Periodicity Summary: PointProcess: rate Summary: PointProcess: interval Ie Between factors score ist_chilli Ire Within covariates Image: Standard Deviation Image: StandardD

added dynamic network measures as in <u>Seizemore et al., 2017</u>

several Settings Fire with Variables Variables cost Subjects Subjects Correlative, sample_01 mat Correlative, sample_03 mat Correlativ	GraphVar - SampleWorkspace			
Brain regions files Brain Regions case Select File with Variables Variables.csv Select Subjects Create Connectively Matrix Image: Connectively Matrix Image: Connectively Matrix Subjects Conflating: sample_01 mat Image: Connectively Matrix Image: Connectively Matrix Conflating: sample_01 mat Temporal pole superor temporal of the superor temporal pole superor temporal pol	General Settings	Network Construction		?
Fie with Variables Variables Variables Variables Select Select Subjects Connuntry structure Connuntry structure Created connectively Matrix Image: absolute weights negative weights to zero Network nodes / Brain areas Network thresholds ConfMatrix_sample_02 and Image: absolute weights Image: absolute weights </td <td>Brain regions files BrainRegions.csv Select</td> <td>Threshold</td> <td>Network Calculations</td> <td></td>	Brain regions files BrainRegions.csv Select	Threshold	Network Calculations	
Salect Subjects Connative in consist in consis	File with Variables Variables.csv Select	Significant Relative Absolute SICE	None Calculate graph metrics Community struct	ture
Create Connectivity Matrix Subjects Subjects CorrMatrix_sample_02 mat CorrMatrix_sample_03 mat CorrMatrix_sample_04 uperor temporal gryss (Upit) Temporal pole Mode temporal gryss (Upit) Temporal pole Subjects CorrMatrix_sample_01.mat Subjects CorrMatrix_sample_01.mat Start: 12 End (remaining characters); 4 CorrMatrix Array CorrMatrix_sample_01.mat Start: 12 End (remaining characters); 4 CorrMatrix Array CorrMatrix Array CorrMatrix Raw Matrix (link wise) CheckFras Connectivity Thr. r to z Start 10 Encertal Raw Matrix (link wise) Connectivity Thr. CorrMatrix_sample_01.mat Salex Salex random networks 03 So random networks 03 So random network	Select Subjects (Conn Matrix)	 no change absolute weights negative w 	eights to zero	
Subjects At subjects CorrMatrix_sample_01 mat CorrMatrix_sample_02 mat CorrMatrix_sample_03 mat CorrMatrix_sample_04 mat CorrMatrix_sample_05 mat CorrMatrix_sample_07 mat Image: CorrMatrix Temporal poil: (Reput) Temporal poil:	Create Connectivity Matrix	Network nodes / Brain areas Network three	sholds	
CorrMatrix_sample_02_mat Image: CorrMatrix_sample_02_mat CorrMatrix_sample_04_mat Image: CorrMatrix_sample_06_mat CorrMatrix_sample_06_mat Image: CorrMatrix_sample_06_mat Subjectname in Filename Image: CorrMatrix_sample_07_mat CorrMatrix_sample_07_mat Image: CorrMatrix_sample_07_mat Stubjectname in Filename Image: CorrMatrix_sample_07_mat CorrMatrix_sample_07_mat Image: CorrMatrix_sample_07_mat Stat: 12 CorrMatrix_sample_07_mat Image: CorrMatrix_sample_07_	Subjects	Superior temporal ovrus (Right)	All subjects	
CorrMatrix_sample_0.3 nat Temporal pole superor temporal CorrMatrix_sample_0.5 nat Temporal pole superor temporal CorrMatrix_sample_0.5 nat Temporal pole superor temporal CorrMatrix_sample_0.7 nat Temporal pole superor temporal Subjectname in Flename 1.0 CorrMatrix_sample_0.7 nat Temporal pole motile temporal Start: 12 End (remaining characters): Attack Generate randomized subject data 0.17 (null model network) CheckFirag Save interim results Parallel Workers: Or Rew Matrix (link wise) Generate Generate (null model network) CheckFirag Visualize modules with BrainNet viewer Parallel Workers: 0 Or Rew Matrix (link wise) Generate Generate 04 05 05 Gost 06 Generate 07 Generate 08 Generate 09 Generate 04 05 05 01 06 Gener	CorrMatrix_sample_01.mat	Temporal pole: superior temporal		
CorrMatrix_sample_04 mat CorrMatrix_sample_06 mat CorrMatrix_sample_06 mat CorrMatrix_sample_07 mat Mddd temporal gyrus (Left) Temporal pole mddl temporal	CorrMatrix_sample_02.mat	Temporal pole: superior temporal 0.12	E Two groups	
Constants_sample_0.5 mail CorrMatrix_sample_0.5 mail CorrMatrix_sample_0.7 mail Subjectname in Flename CorrMatrix_sample_0.1 mat Start: 12 End (remaining characters): 4 Corr Matrix Array CorrMatrix Save interim results Paralel Workers: 0 Rew Matrix (link wise) Concectivity Thr. r to z 0 Concectivity Thr. r to z 0 Concect	CorrMatrix_sample_03.mat	Middle temporal gyrus (Left) 0.13		
CorrMatrix_sample_0.6 mat Impound pose. middle temporal by the state of the	CorrMatrix sample 05.mat	Temporal pole: middle temporal gr	Resolution (gamma): 1.0	
CorrMatrix_sample_07.mat Interior temporal pryous (Left) 0.17 Subjectname in Fiename Interior temporal pryous (Left) 0.17 CorrMatrix_sample_01.mat Interior temporal pryous (Left) 0.17 Start: 12 End (remaining characters): 4 CorrMatrix Array CorrMatrix Parallel Workers: 0 Save interim results Parallel Workers: 0 Raw Matrix (link wise) CheckFrag CheckFrag Raw Matrix (link wise) GLM Machine Learning Valualize modules with BrainNet viewer 9 Ø5 Generate 9 Ø4 Gonerate 9 Ø4 Gonerate 9 Ø5 Generate 9 Ø4 Gonerate 9 Ø5 Generate 9 Ø5 Global and networks 9 Ø25 Global and networks 9 Ø25 Global and networks 9 Ø25 0 9 9 Ø25 0 9 9 Ø25 0 9 9	CorrMatrix_sample_06.mat	Temporal pole: middle temporal gr		
Subjectname in Flename 0.18 CorrMatrix_sample_01.mat 0.18 Start: 12 End (remaining characters): 4 Corr Matrix_Array CorrMatrix • Save interim results Parallel Workers: • Raw Matrix (ink wise) • • Raw Matrix (ink wise) • • Other the subject data (null model network) • • Connectivity Thr. • • Corr Age in the intervent weights • • Objectname • • Corr Age intervent weights • • Raw matrix • • • Objectname • • • Outpet • • • Connectivity Thr. • • • Objectname • • <td>CorrMatrix_sample_07.mat</td> <td>Inferior temporal gyrus (Left) 0.17</td> <td>Pre-calculated groups</td> <td></td>	CorrMatrix_sample_07.mat	Inferior temporal gyrus (Left) 0.17	Pre-calculated groups	
CorrMatrix_sample_01.mat Start: 12 End (remaining characters): 4 Corr Matrix Array CorrMatrix Save interim results Parallel Workers: 0 Raw Matrix (link wise) CheckFrag Correctivity Thr. r to z Correctivity Thr. r to z Correctivity Thr. Generate random networks 005 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 016 016 Nuisance covariates 007 009 008 008 009 008 009 009 009 009 009	Subjectname in Filename	la forior tomporal aurus (Diabt) 0.18	·	
Start: 12 End (remaining characters): 4 Corr Matrix Array CorrMatrix CorrMatrix CorrMatrix Parallel Workers: 0 Save interim results Parallel Workers: 0 Parallel Workers: 0 Raw Matrix (link wise) CheckErag CheckErag CheckErag Raw Matrix (link wise) Connectivity Thr. r to z 045 Generate 0 0 035 Correlation Correlation Between covariates 009 003 Correlation Between factors 009 009 Correlation Within covariates Correlation Weights In on change absolute weights Select Within D No Interactions In on change absolute weights to zero Craph metrics r and NW permutation Raw matrix In on change absolute weights To zero Carph metrics r and NW permutation In on change absolute weights To zero To zero To zero To zero	CorrMatrix_sample_01.mat		Classification consistency and diversity	
Corr Matrix randomized subject data (null model network) Image: CorrMatrix Save interim results Parallel Workers: 0 Raw Matrix (ink wise) CheckFrag Image: Correctivity Thr. r to z Image: Correctivity Thr. Image: Correctivity Thr. Image: Correctivity Thr.	Start: 12 End (remaining characters): 4	Generate	Partition distance (MIn, VIn) for two group	ps
Construct (null model network) CheckFrag Save interim results Parallel Workers: 0 Raw Matrix (link wise) Raw matrix Connectivity Thr. r to z 045 Generate	Corr Matrix Array	randomized subject data	Visualize modules with BrainNet viewer	
Save interim results Parallel Workers: 0 Raw Matrix (link wise) Raw matrix Connectivity Thr. r to z Officiency Generate Image: Connectivity Thr. r to z Officiency Between covariates Image: Connectivity Thr. Image: Connectivity Thr.	corr matrix Array	(null model network)	Chaol/Error	
Raw Matrix (link wise) GLM Machine Learning Raw matrix Connectivity Thr. r to z 0 0 0 045 0 0 035 0 0 035 0 0 035 0 0 035 0 0 036 0 0 007 absolute weights Within ID No Interactions * Select Within ID No Interactions • • • <td< th=""><th>Save interim results Parallel Workers: 0</th><th></th><th>Спескггад</th><th></th></td<>	Save interim results Parallel Workers: 0		Спескггад	
Raw matrix Onnectivity Thr. r to z Odd Od		Raw Matrix (link wise)	GLM Machine Learning	
Connectivity Thr. r to z 045 Generate 045 adom networks 035 03 025 02 011 009 009 003 007 absolute weights © no change absolute weights to zero Between tovariates within covariates 007 c 007 c 008 absolute weights to zero		Raw matrix	Machine Leanning	
Connectivity Inr. r to z 04 Generate 1045 andom networks 035 035 025 02 015 01 009 008 007 absolute weights © no change absolute weights © negative weights to zero rand NW Permutation #Rep Raw matrix rand NW Permutation 1			Variables Between covariates	
Office		Connectivity Inr. r to z		_ ^
045 random networks 035 035 025 02 015 01 008 007 007 absolute weights Image: Image		05 Generate	research site	-
04 035 03 025 02 015 01 009 008 007 © no change absolute weights © no change absolute weights © negative weights to zero Graph metrics © parametric rand NW Permutation #Rep Raw matrix rand NW © parametric rand NW Permutation 1		.045 random networks	IQ Between factors	
035 0.3 0.25 0.2 0.15 0.1 0.09 0.08 0.07		.04	beer_pong_score	~
Image: Construction of the second of the		.035	eating_contest_chilli	-
Image: Construction of the second of the		.03	fantasy_score Within covariates	
Image: Output of the second		.02	>>	
Image: Construction of the second		.015		-
Graph Var Weights On ochange O absolute weights Image: Im		.01	Nuisance covariates	
Graph Var Weights no change absolute weights no change absolute weights negative weights to zero Graph metrics rand NW permutation Raw matrix parametric rand NW permutation 1		.009	>> Indisance covariates	
Graph Var Weights no change on absolute weights negative weights to zero Select Within ID No Interactions Graph metrics on and NW on permutation #Rep Raw matrix on and NW on permutation 1		007		Ţ.
Weights Image: Construction on change Image: Const	Graph Var		Coloct Within ID	
Image Image <td< td=""><td>uraph var</td><td>Weights</td><td>No Interactions</td><td>•</td></td<>	uraph var	Weights	No Interactions	•
e negative weights to zero e parametric rand NW permutation #Rep		no change absolute weights	Graph metrics	
Raw matrix Permutation 1		negative weights to zero	#F	Rep
			Raw matrix parametric rand NW permutation	1
Switch Workenace Onen Previous Results < Load interim results > Statistics with already calculated values Calculate & Statistics	Switch Workenson		atistics with already calculated values Calculate & Statistic	cs

added community functionalities as in Fornito et al., 2012

What is this new feature?

It can be used to obtain a group based consensus of the graph decomposition

Community functionalities as in Fornito et al., 2012

Tutorial

added community functionalities as in e.g. <u>Fornito et al., 2012</u>

Consensus Community structure - general procedure (text adapted from Dwyer et al. 2014):

1. Individual level modular decomposition:

We run multiple iterations (1000) of the Louvain/Newman modularity algorithm (which is an optimization algorithm and thus produces slightly different outcomes per iteration) to obtain a set of possible clusters in the graph. To identify the final clustering solution, we use a consensus-based approach in which we generate a co-classification matrix (in which each [i, j] element contained 1 if two nodes were classified in the same module and 0 otherwise) and subsequently run a second decomposition of this co-classification matrix (c.f. Lancichinetti and Fortunato, 2012). In this manner, nodes frequently co-classified in the same module across multiple iterations of the algorithm will be assigned to the same module in the final solution.

2. Group-level modular decomposition:

To obtain a group based consensus of the graph decomposition, we pass the final consensus decompositions for each individual to a second level to derive a group-level representation of network modularity based on a similar logic to the consensus approach used at the single-subject level. Specifically, the individuals final consensus decompositions are summed across individuals to generate a sample-level consistency matrix. A high weight in elements of this matrix indicates that two nodes were frequently classified in the same module across individuals. As such, a subsequent modular decomposition of this group-level consistency matrix ensures that nodes frequently co-classified together are likely to be assigned to the same module in the final solution.

By aggregating results across single-participant decompositions, this consensus-based approach allows to derive a group-level representation of community structure while also characterizing interindividual variability in network organization using classification consistency and diversity metrics. Such analyses are not possible when decomposition is performed on a group-averaged correlation matrix. Consensus-based approaches have also been shown to yield more stable individual module solutions, given the known degeneracy of most graph theoretic module detection algorithms (Good et al., 2010; Lancichinetti and Fortunato, 2012).

All subjects :

(Variable sheet with Subject IDs recquired)

		GraphVar - SampleWorkspace
Group community structure All subjects Two groups Resolution (gamma): 1.0		General Settings Brain regions files BrainRegions.csv Select File with Variables Variables.csv Select Select Subjects (Conn Matrix) Create Connectivity Matrix Subjects CorrMatrix/CorrMatrix_CorrMatrix_sample_01.mat CorrMatrix/CorrMatrix_CorrMatrix_sample_03.mat CorrMatrix/CorrMatrix_CorrMatrix_sample_04.mat CorrMatrix/CorrMatrix_CorrMa
Pre-calculated groups	Performs a group consensus clustering across all subjects that are loaded	CorrMatrix/CorrMatrix_CorrMatrix_sample_05.mat
Classification consistency and diversity	in the current workspace	CorrMatrix_CorrMatrix_sample_01.mat
Partition distance (MIn, VIn) for two groups		Start: 12 End (remaining characters): 4
Visualize modules with BrainNet viewer		Corr Matrix Array CorrMatrix

Two groups:

(Variable sheet with Subject IDs recquired)

TESTING BETWEEN-GROUP DIFFERENCES IN MODULAR ORGANIZATION:

To evaluate the significance of between-goup differences in modular organization we use a permutation approach. By permuting labels across groups and re-calculating the difference between groups in the respective modularity metric (see next slide) we obtain a distribution of this group difference under the null-hypothesis. By placing the real group difference "delta" in the random distribution of deltas we can determine the significance from its percentile position in the distribution.

If you have perfomed previous modularity analyses on different sets of subjects with the "All subjects" function, you can compare the results by loading the respective "GroupCommunity" folder (similar to "Two groups" function)

Measures of modular organization I:

Group community structure				
or oup community structure				
All subjects				
-				
I wo groups				
Resolution (gamma): 1.0				
Pre-calculated around				
Pre-calculated groups				
Classification consistency and diversity				
Partition distance (MIn, VIn) for two groups				
Visualize modules with BrainNet viewer				

OPTIMAL MODULAR DECOMPOSITION – Q (text adapted from Fischi-Gomez et al., 2016):

In the Louvain modularity algorithm, Q is obtained by iteratively repeating 2 steps until convergence to a modularity maximum (Q).

First, each node is placed in a separate module, and all possible node moves between modules are evaluated in terms of modularity gain (step 1). When no individual move can further improve the Q value, nodes belonging to the same community are agglomerated (step 2) in order to form new 'super-nodes'. Step one (moves evaluation) is repeated on the new 'super-nodes' network. The two steps are repeated until convergence.

Measures of modular organization II:

CLASSIFICATION CONSISTENCY AND DIVERSITY (text adapted from Fornito et al., 2012):

To understand the functional roles played by each module and their constituent nodes, one can examine the **consistency and diversity** with which different regions are coclassified into the same module across participants.

Classification consistency is estimated by computing the within-module strength, *z*, of each node in the group-level consistency matrix. *Classification diversity* is computed using the diversity coefficient *h*.

Applied in this context, *z* quantifies the degree to which each region is classified in the same module across participants relative to other nodes in the same module. Brain regions with high *z* values represent core components of their module and thus act as local connectivity hubs. The diversity coefficient, *h*, quantifies the variability of each region's modular assignment across participants. Regions with high *h* have a relatively equal probability of being classified into different modules across participants, because their connectivity is dispersed between modules from individual to individual. These regions, therefore, represent transitional nodes that facilitate functional integration between modules.

Measures of modular organization III:

Group community structure
All subjects
Two groups
Resolution (gamma): 1.0
Pre-calculated groups
Classification consistency and diversity
Partition distance (Mln, Vln) for two groups
Visualize modules with BrainNet viewer

PARTITION DISTANCE (text adapted from Fischi-Gomez et al., 2016):

Quantifies the distance between pairs of community partitions with information theoretic measures: mutual information and variational information (Meila, 2007).

These two measures, based on the concept of entropy, quantify similarities and differences between graphs partitions. The *mutual information (MI)* quantifies how much information is shared by the two (different) partitions Ci and Cj of a given network G. Roughly speaking, MI tells how much we learn about Ci if we know Cj, and viceversa. Nevertheless the most commonly used measure of similarity in graph is the normalized mutual information (MIn), introduced by (Danon et al., 2005). This measure equals 1 if the two partitions are identical, whereas it has an expected value of 0 is the two partitions are independent.

The variation of information (VI) expresses the quantity of information intrinsic to the two partitions, corrected by the information shared by the two partitions. VI is upbounded by the logarithm of the number of nodes (log n) and can be therefore normalized by this value, giving a rescaled value of VI to the range [0,1].

Output visualization:

•	male Modules in Community for Thr. 0.5						
Γ		1	2	3			
Γ	1	Summary	red	yellow			
Γ	2	sizes: 46 44	Precentral gyrus (Left)	Superior frontal gyrus			
Γ	3	Q: 0.48789	Precentral gyrus (Right)	Superior frontal gyrus			
Γ	4		Inferior frontal gyrus,	Superior frontal gyrus			
Γ	5		Rolandic operculum (L	Superior frontal gyrus			
[6		Rolandic operculum (R	Middle frontal gyrus (L			
	7		Supplementary motor	Middle frontal gyrus (
Γ	8		Supplementary motor	Middle frontal gyrus or			
Γ	9		Insula (Left)	Middle frontal gyrus or			
	10		Insula (Right)	Inferior frontal gyrus,			
Γ	11		Median cingulate and	Inferior frontal gyrus, t			
Γ	12		Median cingulate and	Inferior frontal gyrus, t			
Γ	13		Amygdala (Left)	Inferior frontal gyrus,			
	14		Amygdala (Right)	Inferior frontal gyrus,			
	15		Calcarine fissure and	Olfactory cortex (Left)			
Γ	16		Calcarine fissure and	Olfactory cortex (Right)			
Γ	17		Cuneus (Left)	Superior frontal gyrus			
	18		Cuneus (Right)	Superior frontal gyrus			
	19		Lingual gyrus (Left)	Superior frontal gyrus			
	20		Lingual gyrus (Right)	Superior frontal gyrus			
	21		Superior occipital gyru	Gyrus rectus (Left)			

fem	ale Modules in Com	munity for Thr. 0.5			Σ
	1	2	3	4	-
1	Summary	red	yellow	green	ŀ
2	sizes: 31 30 29	Superior frontal gyrus	Precentral gyrus (Left)	Hippocampus (Left)	ſ
3	Q: 0.61841	Superior frontal gyrus	Precentral gyrus (Right)	Hippocampus (Right)	1
4	1	Superior frontal gyrus	Middle frontal gyrus (Parahippocampal gyru.	
5		Superior frontal gyrus	Inferior frontal gyrus,	Parahippocampal gyru.	
6	1	Middle frontal gyrus (L	Inferior frontal gyrus,	Amygdala (Left)	
7		Middle frontal gyrus or	Inferior frontal gyrus, t	Amygdala (Right)	1
8	1	Middle frontal gyrus or	Rolandic operculum (L	Calcarine fissure and	
9		Inferior frontal gyrus, t	Rolandic operculum (R	Calcarine fissure and	
10	1	Inferior frontal gyrus,	Supplementary motor	Lingual gyrus (Left)	1
11		Inferior frontal gyrus,	Supplementary motor	Lingual gyrus (Right)	1
12	1	Olfactory cortex (Left)	Insula (Left)	Superior occipital gyru.	
13		Olfactory cortex (Right)	Insula (Right)	Superior occipital gyru.	
14	1	Superior frontal gyrus	Median cingulate and	Middle occipital gyrus	
15		Superior frontal gyrus	Median cingulate and	Middle occipital gyrus	
16	1	Superior frontal gyrus	Cuneus (Right)	Inferior occipital gyrus.	l
17		Superior frontal gyrus	Postcentral gyrus (Left)	Inferior occipital gyrus.	
18	1	Gyrus rectus (Left)	Postcentral gyrus (Rig	Fusiform gyrus (Left)	
19		Gyrus rectus (Right)	Superior parietal gyru	Fusiform gyrus (Right)	
20	1	Anterior cingulate and	Superior parietal gyru	Caudate nucleus (Left)	
21		Anterior cingulate and	Inferior parietal, but su	Caudate nucleus (Right	ŧ
22	1	Posterior cingulate gyr	Inferior parietal, but su	Lenticular nucleus, pu.	
23		Posterior cingulate gyr	Supramarginal gyrus (Lenticular nucleus, pu.	
	•			•	

Saved output in folder "Group Community":

Figures created by BrainNetViewer and zh-Plots are also saved in this folder

Saved output in folder "GraphVars":

Difference in h between groups Difference in Q between groups Difference in Z between groups MIn – between groups VIn – between groups Subject-level consistency matrices (one per subject) Permutation distribution of difference in h (sorted) Permutation distribution of difference in Q (sorted) Permutation distribution of difference in Z (sorted) Permutation distribution MIn (sorted) Permutation distribution VIn (sorted) Permutation generated Affiliation vectors of rand groups Permutation generated h per region per permutation Permutation generated Q per permutation Permutation generated Z per permutation

Subject-level consensus affiliation vector (one per subj) Overlap of nodes in modules: Group 1 -> Group 2 Overlap of nodes in modules: Group 2 -> Group 1 P-value for h (one per region) P-value for MIn P-value for Q P-value for VIn P-value for Z (one per region)

actual_delta_h actual delta Q actual delta Z actual MIn actual VIn agreement_matrix_1_2 distr_delta_h_group_perm distr_delta_Q_group_perm distr_delta_Z_group_perm distr_MIn_group_perm distr_VIn_group_perm group_1_perm_C group_1_perm_h group_1_perm_Q group_1_perm_Z group_2_perm_C group_2_perm_h group_2_perm_Q group_2_perm_Z modularity_louvain_cOut_und_1_2 Modularity_overlap_percent_1_2 Modularity_overlap_percent_2_1 愉 P_h P MIn ៉ P_Q 🛍 P_VIn 1 P Z

Miscellaneous:

Binarized Affiliation vectors (one per module)

Moroup_1_Binary_Affiliation_Vectors_0.1

	1	2	3	4
1	0	1	0	0
2	0	1	0	0
3	1	0	0	0
4	1	0	0	0
5	1	0	0	0
6	1	0	0	0
7	1	0	0	0
8	1	0	0	0
9	1	0	0	0
10	1	0	0	0
11	1	0	0	0
12	1	0	0	0
13	1	0	0	0
14	1	0	0	0
15	1	0	0	0
16	1	0	0	0
17	0	1	0	0
18	0	1	0	0
19	0	1	0	0
20	0	1	0	0
21	0	0	1	0
22	0	0	1	0
23	1	0	0	0
24	1	0	0	0
25	1	0	0	0
26	1	0	0	0
27	1	0	0	0
28	1	0	0	0
29	0	1	0	0
30	0	1	0	0
31	1	0	0	0
32	1	0	0	0

1	0	recentral_L	Precentral gyrus (Left)	-40	-6	51
2	0	recentral_R	Precentral gyrus (Right)	40	-8	52
3	1	rontal_Sup_L	Superior frontal gyrus, dorsolateral (Lef	-19	35	42
1	1	rontal_Sup_R	Superior frontal gyrus, dorsolateral (Rig	20	31	44
5	0	rontal_Sup_Orb_L	Superior frontal gyrus, orbital part (Left	-18	47	-13
5	1	rontal_Sup_Orb_R	Superior frontal gyrus, orbital part (Righ	17	48	-14
7	1	rontal_Mid_L	Middle frontal gyrus (Left)	-34	33	35
в	1	rontal_Mid_R	Middle frontal gyrus (Right)	37	33	34
•	0	rontal_Mid_Orb_L	Middle frontal gyrus orbital part (Left)	-32	50	-10
10	0	rontal_Mid_Orb_R	Middle frontal gyrus orbital part (Right)	32	53	-11
1	0	rontal Inf Oper L	Inferior frontal gyrus, opercular part (Le	-49	13	19
2	1	rontal_Inf_Oper_R	Inferior frontal gyrus, opercular part (Ri	49	15	21
13	1	rontal_Inf_Tri_L	Inferior frontal gyrus, triangular part (Le	-47	30	14
14	1	rontal_Inf_Tri_R	Inferior frontal gyrus, triangular part (Ri	49	30	14
15	1	rontal_Inf_Orb_L	Inferior frontal gyrus, orbital part (Left)	-37	31	-12
16	1	rontal_Inf_Orb_R	Inferior frontal gyrus, orbital part (Right	40	32	-12
L7	0	olandic Oper L	Rolandic operculum (Left)	-48	-8	14
18	1	olandic_Oper_R	Rolandic operculum (Right)	52	-6	15
19	1	upp_Motor_Area_L	Supplementary motor area (Left)	-6	5	61
20	1	upp_Motor_Area_R	Supplementary motor area (Right)	8	0	62
21	0	Ifactory L	Olfactory cortex (Left)	-9	15	-12
22	0	lfactory_R	Olfactory cortex (Right)	8	16	-11
23	0	rontal_Sup_Medial_L	Superior frontal gyrus, medial (Left)	-6	49	31
24	0	rontal Sup Medial R	Superior frontal gyrus, medial (Right)	8	51	30
25	0	rontal_Med_Orb_L	Superior frontal gyrus, medial orbital (L	-6	54	-7
26	0	rontal Med Orb R	Superior frontal gyrus, medial orbital (F	7	52	-7
27	0	ectus L	Gyrus rectus (Left)	-6	37	-18
28	1	ectus_R	Gyrus rectus (Right)	7	36	-18
29	1	nsula_L	Insula (Left)	-36	7	3
30	1	nsula_R	Insula (Right)	38	6	2
31	0 (ingulum_Ant_L	Anterior cingulate and paracingulate gy	-5	35	14
32	1	ingulum_Ant_R	Anterior cingulate and paracingulate gy	7	37	16
33	0 (ingulum_Mid_L	Median cingulate and paracingulate gyr	-6	-15	42
34	0	ingulum_Mid_R	Median cingulate and paracingulate gyr	7	-9	40
35	1	ingulum_Post_L	Posterior cingulate gyrus (Left)	-6	-43	25
36	1	ingulum_Post_R	Posterior cingulate gyrus (Right)	6	-42	22
37	0	ippocampus_L	Hippocampus (Left)	-26	-21	-10
38	1	ippocampus_R	Hippocampus (Right)	28	-20	-10
			6 11 1 0 00	~~		~

Precentral gyrus (Left)	*		
Precentral gyrus (Right)			
Superior frontal gyrus, dorsolate			
Superior frontal gyrus, dorsolate			
Superior frontal gyrus, orbital par			
Superior frontal gyrus, orbital par			
Middle frontal gyrus (Left)			
Middle frontal gyrus (Right)	Ŧ		
4			

Simply use (one of) the binary affiliation vectors as input to the BrainRegions xlsx sheet (first column) for subnetwork analyses