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MRI quantification of non-Gaussian water
diffusion by kurtosis analysisy

Jens H. Jensena,b* and Joseph A. Helperna,b,c,d
Quantification of non-Gaussianity for water diffusion i
NMR Biom
n brain bymeans of diffusional kurtosis imaging (DKI) is reviewed.
Diffusional non-Gaussianity is a consequence of tissue structure that creates diffusion barriers and compartments. The
degree of non-Gaussianity is conveniently quantified by the diffusional kurtosis and derivative metrics, such as the
mean, axial, and radial kurtoses. DKI is a diffusion-weighted MRI technique that allows the diffusional kurtosis to
be estimated with clinical scanners using standard diffusion-weighted pulse sequences and relatively modest acqui-
sition times. DKI is an extension of the widely used diffusion tensor imaging method, but requires the use of at least
3 b-values and 15 diffusion directions. This review discusses the underlying theory of DKI as well as practical
considerations related to data acquisition and post-processing. It is argued that the diffusional kurtosis is
sensitive to diffusional heterogeneity and suggested that DKI may be useful for investigating ischemic stroke and
neuropathologies, such as Alzheimer’s disease and schizophrenia. Copyright � 2010 John Wiley & Sons, Ltd.
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INTRODUCTION

Molecular diffusion is a random process and, as such, it may be
described by probability distributions. Themost basic of these is the
probability of amoleculemoving a given displacement over a given
time interval. For simple, homogeneous liquids (e.g. a glass of
water), this displacement probability distribution function (PDF) is
Gaussian (1), and the diffusion is referred to as Gaussian diffusion.
However, inmany biological tissues including brain, the presence of
barriers (e.g. cell membranes) and compartments (e.g. intracellular
and extracellular spaces) alter the water diffusion PDF so that it is, in
general, no longer precisely Gaussian and the diffusion is referred to
as non-Gaussian. Quantification of the degree of diffusional
non-Gaussianity can be useful in characterizing the associated
tissue structures on which the PDF depends.
The kurtosis is a dimensionless statistical metric for quantifying

the non-Gaussianity of an arbitrary probability distribution (2). If
Mn is the nth moment of a distribution about its mean value, then
the kurtosis may be defined as

K ¼ M4

M2
2

� 3: (1)

For any Gaussian distribution, K ¼ 0. If a distribution has
less weight on its center and tails compared to a Gaussian with
the same variance, then K < 0, and if the distribution has more
weight on its center and tails, then K > 0. One can prove the
general lower bound K � �2.
Recently, it has been shown how to estimate, in brain, the

kurtosis of the water diffusion displacement PDF with relatively
simple diffusion-weighted imaging protocols that are suitable for
clinical MRI systems (3–5). This method has been referred to as
diffusional kurtosis imaging (DKI) and is a natural extension of
diffusion tensor imaging (DTI) (6–10). With DKI, one obtains
estimates for all the standard DTI diffusion metrics, such as the
mean diffusivity (MD) and the fractional anisotropy (FA), and also
for several additional metrics related to the diffusional kurtosis. In
ed. 2010; 23: 698–710 Copyright � 2010
this way, DKI provides for a more complete characterization of
water diffusion in brain. Here we review both the underlying
theory of DKI and practical aspects of its implementation.
John Wiley & Sons, Ltd.
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DEFINITIONS

Let Pðr; tÞ be the water diffusion PDF for a vectorial displacement
r over a time interval t (the diffusion time). The average of an
arbitrary function AðrÞ can then be written

AðrÞh i �
Z

d3rPðr; tÞAðrÞ; (2)

with the angle brackets being introduced as a shorthand for
averaging over the PDF. The diffusion coefficient in a direction n is
then defined by

DðnÞ � 1

2t
r � nð Þ2

D E
; (3)

where we assume that nj j ¼ 1. The diffusion coefficient therefore
quantifies the variance of the PDF in a given direction. The
diffusional kurtosis in the direction n is similarly defined by

KðnÞ �
r � nð Þ4

� �
r � nð Þ2

D E2 � 3: (4)

Eqn (4) is a direct application of the general formula for kurtosis of
eqn (1) to molecular diffusion.
The MD corresponds to the average of the diffusion coefficient

over all directions, which may be formally expressed as the
surface integral

D � 1

4p

Z
dVnDðnÞ; (5)

with dVn representing a solid angle element for the direction n:
The mean kurtosis (MK) has the analogous definition

K � 1

4p

Z
dVnKðnÞ (6)

and is a metric of primary interest for DKI.
In order to quantify diffusional anisotropy, it is useful to define

the diffusion tensor

Dij �
1

2t
rirj
� �

(7)

and the kurtosis tensor

Wijkl �
9

r � rh i2
rirj rkrl
� �

� rirj
� �

rkrlh i � rirkh i rjrl
� �

� rirlh i rjrk
� �� �

;

(8)

where ri , i ¼ 1; 2; or 3; is a component of the displacement
vector r. Both of these tensors are symmetric with respect to
interchange of their indices. The diffusion tensor has 32 ¼ 9
components, but because of symmetry only six are independent.
The kurtosis tensor has 34 ¼ 81 components, but because of
symmetry only 15 are independent. With these two tensors, the
diffusion coefficient and diffusional kurtosis in an arbitrary
direction can be calculated from

DðnÞ ¼
X3
i;j¼1

ninjDij; (9)

and

KðnÞ ¼ D
2

DðnÞ½ �2
X3

i;j;k;l¼1

ninjnknlWijkl: (10)

As a consequence, the full angular variation for the diffusion
coefficient is fixed by the 6 independent degrees of freedom for
NMR Biomed. 2010; 23: 698–710 Copyright � 2010 John Wiley
the diffusion tensor, and the full angular variation for the diff-
usional kurtosis is fixed by the 6þ 15¼ 21 combined degrees of
freedom for the diffusion and kurtosis tensors.
It is natural to consider a frame of reference that diagonalizes

the diffusion tensor. The direction parallel to the diffusion
eigenvector corresponding to the largest diffusion eigenvalue is
often referred to as the parallel direction, since in white matter
this direction would typically be aligned with axons. One can then
define the parallel diffusivity and parallel kurtosis by (11)

Djj � DðnjjÞ; (11)

and

Kjj � KðnjjÞ; (12)

where njj is a unit vector oriented in the parallel direction. One
may also define the perpendicular diffusivity and perpendicular
kurtosis by

D? � 1

2p

Z
dVnDðnÞd n � njj

� �
; (13)

and

K? � 1

2p

Z
dVnKðnÞd n � njj

� �
; (14)

with dðxÞ indicating the Dirac delta function. For isotropic
diffusion, Djj ¼ D? ¼ D and Kjj ¼ K? ¼ K . An alternative, non-
equivalent (but qualitatively similar) definition for K? has been
proposed by Hui and coworkers (11).
Lätt and coworkers (12) have also considered a kurtosis for the

Fourier transform of the PDF. While this Fourier space (q-space)
kurtosis also vanishes for Gaussian diffusion, since the Fourier
transform of a Gaussian is itself a Gaussian, it is otherwise
physically distinct from the diffusional kurtosis as defined by
eqn (4).
SIMPLE MODELS

Both the diffusion coefficient and the diffusional kurtosis are
model independent diffusion metrics. This is an important ad-
vantage, in that it makes them physically well-defined. However,
as a consequence of not being tied to a specific tissue model,
their interpretation in terms of tissue structure is not always
straightforward. For example, the precise mechanism for the
diffusion coefficient changes associated with cerebral ischemia in
brain has been extensively debated (13–15).
In order to better understand the physical meaning of the

diffusional kurtosis, it is helpful to consider idealized diffusion
models. Here we consider three basic types: multiple compart-
ment models without water exchange, a two-compartment
model with water exchange, and a one-dimensional model with
equally spaced semi-permeable barriers. Multiple compartment
models are the simplest and most widely applied models for
water diffusion in brain, with the compartments representing, for
example, intracellualler spaces, extracellular spaces, distinct
white matter tracts, and/or cerebrospinal fluid (CSF). The other
two types of models are utilized to better understand the
effects of water transport between compartments and of
diffusion barriers (e.g. cell membranes and organelles), which
are not explicitly included in elementary multiple compartment
models.
& Sons, Ltd. View this article online at wileyonlinelibrary.com
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Multiple compartment models

For a single compartment with Gaussian diffusion, the PDF is
given by

Pðr; tÞ ¼ 1

4ptð Þ3=2 Dj j1=2
� exp �rT � D�1 � r=4t

� �
; (15)

where D represents the diffusion tensor. One may verify that
eqn (15) is consistent with eqn (9) and that it implies KðnÞ ¼ 0
for all directions. For N Gaussian compartments, eqn (15) is
generalized to

Pðr; tÞ ¼
XN
m¼1

fm
1

4ptð Þ3=2 DðmÞ�� ��1=2
� exp �rT � DðmÞ

h i�1
�r=4t

� �
; (16)

where DðmÞ is the diffusion tensor for the mth compartment and
fm is the corresponding water fraction. The water fractions are
normalized so that

1 ¼
XN
m¼1

fm: (17)

From eqns (9) and (16), one finds

DðnÞ ¼
XN
m¼1

fmD
ðmÞðnÞ; (18)

with

DðmÞðnÞ � nTDðmÞn (19)

being the diffusion coefficient for the mth compartment in the
direction n. Thus the total diffusion coefficient is the weighted
sum of the compartmental diffusion coefficients. For the diff-
usional kurtosis, eqns (9), (10), and (16) lead to (4)

KðnÞ ¼ 3
d2DðnÞ
DðnÞ½ �2

; (20)

where d2DðnÞ is the diffusion coefficient variance defined by

d2DðnÞ �
XN
m¼1

fm DðmÞðnÞ � DðnÞ
h i2� �

: (21)

The diffusional kurtosis is then simply three times the square of
the coefficient of variation for the distribution of compartmental
diffusion coefficients. So qualitatively, the kurtosis is a measure of
Table 1. Parameters for two-compartment model obtained from

Region D1 (mm
2/ms) D2 (mm2/ms) f

GM/CSF 1.479� 0.166 0.466� 0.017 0.490� 0.0
GM/WM 1.142� 0.106 0.338� 0.027 0.622� 0.0
TH 1.320� 0.164 0.271� 0.040 0.617� 0.0
PU/GP 1.069� 0.039 0.257� 0.026 0.648� 0.0
FWM 1.155� 0.046 0.125� 0.014 0.699� 0.0
ICWM 1.215� 0.024 0.183� 0.009 0.637� 0.0

Values for D1, D2, and f were taken from Ref. 16. Values for D, K, and
white matter; GM/CSF, gray matter next to cerebrospinal fluid; GM
white matter; PU/GP, putamen and globus pallidus; TH, thalamus.

View this article online at wileyonlinelibrary.com Copyrig
the heterogeneity of the diffusion environment. Note also that eqn
(20) shows that K � 0 for any multiple compartment model.
Since two-compartment models have been frequently used to

study water diffusion in brain, it is of interest to examine this
special case in greater detail. Let D1 � Dð1ÞðnÞ, D2 � Dð2ÞðnÞ, and
f � f1. Assume further that D1 � D2, so that the m ¼ 1 com-
partment corresponds to the fast diffusing component. Eqns (18)
and (20) then reduce to

DðnÞ ¼ fD1 þ ð1� f ÞD2; (22)

and

KðnÞ ¼ 3f ð1� f Þ D1 � D2ð Þ2

DðnÞ½ �2
: (23)

Solving eqns (22) and (23) in terms of D1 and D2 yields

D1 ¼ DðnÞ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðnÞð1� f Þ

3f

r" #
(24)

and

D2 ¼ DðnÞ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðnÞf

3ð1� f Þ

s" #
: (25)

The physical condition D2 � 0 then implies that

f � 3

3þ KðnÞ � fb: (26)

Hence knowledge of the kurtosis gives an upper bound on the
water fraction for the fast diffusing component of a two-
compartment model. The inequality of eqn (26) becomes an
equality in the limit D1=D2 ! 1. As is suggested by eqn (26), a
knowledge of D and K does not uniquely determine the
two-compartment model parameters of D1,D2, and f.
The parameters D1,D2, and f in various brain regions have been

estimated by Maier and Mulkern (16) for four normal volunteers.
These are reproduced in Table 1 together with values for D, K, and
fb obtained by applying eqns (22), (23), and (26). Note that K � 1
and that in most regions fb exceeds f by no more than 20 to 30%.

Kärger model

The multiple compartment models discussed above do not allow
for water exchange between compartments. A two-compartment
model with water exchange has been proposed by Kärger
(17–19) and is often referred to as the Kärger model. The
four normal volunteers

D (mm2/ms) K fb

12 0.962� 0.083 0.831� 0.140 0.783� 0.029
38 0.838� 0.073 0.649� 0.117 0.822� 0.026
69 0.918� 0.125 0.925� 0.248 0.764� 0.048
28 0.783� 0.035 0.736� 0.097 0.803� 0.021
50 0.845� 0.061 0.938� 0.206 0.762� 0.040
20 0.840� 0.026 1.046� 0.081 0.741� 0.015

fb were calculated using eqns (22), (23), and (26). FWM, frontal
/WM, gray matter next to white matter; ICWM, internal capsule

ht � 2010 John Wiley & Sons, Ltd. NMR Biomed. 2010; 23: 698–710
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independent model parameters are those for the previously
discussed two-compartment model (D1,D2, and f ) plus a
residence time, t1, for the fast diffusing compartment. The
residence time for the slow diffusing compartment is given by
t2 ¼ ð1� f Þt1=f , and an exchange time can be defined by t �
ð1� f Þt1 ¼ ft2. While highly simplified, the Kärger model yields
reasonable results for cell suspensions (20) and has been applied
to the study of water diffusion in brain (21).
The diffusion coefficient for the Kärger model is given by eqn

(22), as for the case without exchange, and is therefore
completely independent of the diffusion time. The diffusional
kurtosis, in contrast, is given by (4,22)

KðtÞ ¼ K0
2t

t
1� t

t
1� e�t=t

	 
h i
; (27)

with K0 ¼ Kð0Þ being equal to the kurtosis value of eqn (23). As a
consequence, the kurtosis decreases with diffusion time on a scale
set by the exchange time. Figure 1 shows a plot of KðtÞ=K0 as a
function of the ratio t=t. In order to emphasize the distinct time
dependencies of D and K, also plotted in Figure 1 is the trivial line
for D=D0 ¼ 1, where D0 is the initial diffusion coefficient. For very
long diffusion times, the kurtosis approaches zero, in consistency
with a Gaussian PDF.
The Kärger model thus represents a clear example where the

diffusion coefficient and diffusional kurtosis have sharply diff-
erent behaviors. It also suggests that the kurtosis could be more
sensitive to water exchange effects in brain than the diffusion
coefficient, although there is as yet no direct empirical evidence
for this.

One-dimensional model with barriers

The PDF for one-dimensional diffusion with equally spaced
semi-permeable membranes can be determined analytically
(23–25). Such a model is of interest because semi-permeable
membranes are a primary source of diffusion restrictions in brain
as well as other biological tissues. The parameters for the model
are the free diffusion coefficient Df , the spacing between
membranes L, and the membrane permeability k.
For short diffusion times, this model leads to

DðtÞ ¼ Df 1� 8

3L

ffiffiffiffiffiffiffi
Df t

p

r
þ OðtÞ

" #
; (28)
Figure 1. Time dependence of the diffusion coefficient and diffusional

kurtosis for the Kärger model. The diffusion coefficient is independent of
the diffusion time, but the kurtosis decreases on a time scale set by the

water exchange time t.

NMR Biomed. 2010; 23: 698–710 Copyright � 2010 John Wiley
and

KðtÞ ¼ 16

5L

ffiffiffiffiffiffiffi
Df t

p

r
þ OðtÞ: (29)

Eqn (28) was derived directly from the one-dimensional diffusion
PDF by Sukstanskii and coworkers (25) and is a special case of a
more general short time formula for diffusion in restricted media
(26,27). The short time expression of eqn (29) for the kurtosis is
also a special case of a general result (28). The growth of the
kurtosis with diffusion time can be viewed as resulting from an
increased diffusional heterogeneity caused by the restriction of
water molecules that are initially closest to membranes. The
permeability k does not affect the short time behaviors for either
D or K, but does enter into the OðtÞ corrections.
In the limit of long diffusion times, one may show that,

DðtÞ � kLDf

kLþ Df
þ L2D2

f

12ðkLþ Df Þ2
� 1
t
; (30)

and for k > 0,

KðtÞ � LDf

2kðkLþ Df Þ
� 1
t
: (31)

The first term on the right side of eqn (30) corresponds to the
famous result of Crick (29), and the second term is also given in
the review by Yablonskiy and Sukstanskii of this journal issue.
Both the diffusion coefficient and the kurtosis decrease with
increasing diffusion time, but the kurtosis approaches zero while
the diffusion coefficient approaches a constant. This vanishing
of the long time kurtosis is, as for the Kärger model, an indicator
that the diffusion PDF becomes Gaussian in this limit. The short
time growth and long time reduction for the kurtosis, implied by
eqns (29) and (31), show that the kurtosis has a maximum for
some intermediate value of the diffusion time.
7

RELATIONSHIP TO NMR SIGNAL

So far we have discussed the diffusional kurtosis without
reference to its measurement with diffusion-weighted NMR/MRI,
and it is important to appreciate that the diffusional kurtosis is a
well-defined quantity independent of any specific measurement
procedure or model. However, the method of estimation for any
physical quantity is central to its applications, and in this section,
we discuss the relationship between the diffusional kurtosis and
the diffusion-weighted NMR signal. For the diffusion-weighted
signal, we shall have in mind that obtained for water with the
canonical Stejskal-Tanner sequence (1,30), although the essential
considerations can be readily extended for many of the other
related sequences.

Q-space approach

The most conceptually straightforward approach for measuring
the diffusional kurtosis is to first use the NMR signal to calcul-
ate the PDF and then determine the kurtosis from eqn (4). The
PDF may be calculated from the NMR signal by using established
q-space imaging methods (1,30–32), and these have been
explicitly applied to the calculation of the kurtosis in brain by
some researchers (12,32,33). However for human imaging,
q-space methods can be demanding both in terms of hardware
requirements and imaging time. In particular, q-space imaging
methods typically utilize large maximum b-values of several
& Sons, Ltd. View this article online at wileyonlinelibrary.com
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Figure 2. Comparison of DTI and DKI fitting models. For DTI, the loga-
rithm of diffusion-weighted signal intensity (circles) as a function of the

b-value is fit, for small b-values, to a straight line. In brain, this fit is often

based on the signal for b ¼ 0 and b ¼ 1000 s/mm2. For DKI, the logarithm

of the signal intensity is fit, for small b-values, to a parabola. In brain, this fit
may be based on the signal for b ¼ 0, b ¼ 1000, and b ¼ 2000 s/mm2.

J. H. JENSEN AND J. A. HELPERN
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thousand s/mm2 or more. Therefore, they are often difficult to
incorporate into clinical imaging protocols.

Series expansion

DKI attempts to build upon the widespread application and
success of DTI by extending the familiar DTI approach to the
calculation of the diffusional kurtosis and related diffusion
metrics. To see how this is done, let us first review some of the
basic principles of DTI. The diffusion-weighted signal intensity,
S, can be regarded as a function of the ‘b-value,’ which for a
Stejskal-Tanner sequence is defined by b � ðgdgÞ2ðD� d=3Þ
where g is the proton gyromagnetic ratio, g is the amplitude of
the diffusion sensitizing magnetic field gradient pulses, d is the
duration of the gradient pulses, and D is the time interval
between the centers of the gradient pulses (1,30). One can then
consider the Taylor series (23,34)

ln SðbÞ½ � ¼ ln S0ð Þ � bDapp þ Oðb2Þ; (32)

where Dapp is the ‘apparent’ diffusion coefficient and S0 � Sð0Þ. In
carrying out the expansion of eqn (32), it is assumed that both
D and d are fixed so that b is varied by changing g. In the short
pulse duration limit d ! 0, Dapp approaches the true diffusion
coefficient D for a diffusion time t ¼ D. For the special case of
multiple, non-exchanging Gaussian compartments, Dapp ¼ D for
arbitrary d. More generally if we assume the dependence on d is
small, we have the approximation

ln SðbÞ½ � � ln S0ð Þ � bDðtÞ; (33)

for b-values that are sufficiently small so that the Oðb2Þ terms of
eqn (32) are negligible. Here the precise meaning of ‘sufficiently
small’ depends on the sample being studied. The validity of eqn
(33) also requires the assumption homogeneous T2 relaxation
within the region of interest (e.g. a voxel). For Gaussian diffusion,
eqn (33) is exact, and it can be rewritten in the familiar form

SðbÞ ¼ S0e
�bD: (34)

By fitting eqn (33) to signal intensity data for a range of
b-values, an estimate for D may be obtained. These data should
all be for the same gradient direction, which then determines the
diffusion direction for D. For any single direction, at least two
b-values are needed, since eqn (33) has two unknowns. If exactly
two b-values, b1 and b2, are used, we then have the closed-form
solution

D � 1

b2 � b1
� ln Sðb1Þ

Sðb2Þ

� �
: (35)

Of course, in applying eqns (33) or (35), it is important to
choose the range of b-values appropriately. If the maximum
b-value is too low, then the variation of the signal intensity will be
small and estimates for D will be extremely sensitive to noise. If
the maximum b-value is too high, then there will be systematic
errors in measured D values due to the neglecting of the Oðb2Þ
term of in eqn (33). For brain, experience has shown that a
maximum b-value of about 1000 s/mm2 provides a reasonable
compromise between precision and accuracy, and this value is
now a widely used standard.
DKI is based on similar logic with the key difference being that

eqn (32) is replaced with the expression

ln SðbÞ½ � ¼ ln S0ð Þ � bDapp þ
1

6
b2D2

appKapp þ Oðb3Þ; (36)
View this article online at wileyonlinelibrary.com Copyrig
which now explicitly includes the Oðb2Þ term (3,4). Eqn (36)
corresponds to a cumulant expansion for the diffusion NMR
signal, as has been discussed in several prior studies (23,34–36).
Here Kapp is the apparent diffusional kurtosis, which approaches
the true kurtosis K in the limit of short pulse durations. Also, for
multiple, non-exchanging Gaussian compartment models,
Kapp ¼ K for arbitrary d, in analogy with the diffusion coefficient.
The DKI extension of eqn (33) is then

ln SðbÞ½ � � ln S0ð Þ � bDðtÞ þ 1

6
bDðtÞ½ �2KðtÞ; (37)

for b-values that are sufficiently small so that the Oðb3Þ terms of
eqn (36) are negligible. As for DTI, the meaning of ‘sufficiently
small’ is, in general, sample dependent, but will typically include a
larger range of b-values than for eqn (33) due to the inclusion of
the higher order term. With this approximation, one can estimate
both D and K by fitting to diffusion-weighted signal intensity data
with three or more b-values (since there are now 3 unknowns) in
any given gradient direction. For exactly three b-values, b1, b2 and
b3, the closed-form expressions are 37

D � ðb3 þ b1ÞDð12Þ � ðb2 þ b1ÞDð13Þ

b3 � b2
; (38)

and

K � 6
Dð12Þ � Dð13Þ

ðb3 � b2ÞD2
; (39)

where

Dð12Þ �
ln Sðb1Þ

Sðb2Þ

h i
b2 � b1

;Dð13Þ �
ln Sðb1Þ

Sðb3Þ

h i
b3 � b1

: (40)

Note that Dð12Þ and Dð13Þ correspond to the DTI estimates of the
diffusion coefficient for the b-values pairs of ðb1; b2Þ and ðb1; b3Þ,
respectively. Figure 2 gives a comparison of the DTI and DKI fits
for a simulated data set.

Maximum b-values for DKI

In order to obtain accurate parameter estimates with DKI, it is
necessary, as for DTI, to be careful in choosing the maximum
ht � 2010 John Wiley & Sons, Ltd. NMR Biomed. 2010; 23: 698–710
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b-values. These will typically be larger than for DTI, since for DKI
we do not want the Oðb2Þ terms to be negligible.
If we make the assumption that SðbÞ is a monotonically

decreasing function of the b-value, then one can derive the upper
bound of (38)

b � 3

DK
(41)

as a necessary condition for the validity of eqn (37). This ass-
umption of a monotonically decreasing signal intensity is emp-
irically true for brain and most other biological tissues, but it can
fail to hold for certain specially structured media (39). As Table 1
indicates, typical values in brain are roughly D � 1mm2=ms and
K � 1. These then imply the upper bound of b �3000 s/mm2.
While eqn (41) is quite general and a useful guide, it is not

sufficient to guarantee that eqn (37) will yield accurate estimates
for D and K. To more precisely determine a suitable b-value range,
we exploit the observation that signal intensity data in brain are
well approximated with biexponential curves up to b-values of
about 5000 s/mm2 (16). Thus as a representative model, it is
reasonable to take

SðbÞ=S0 ¼ fe�bD1 þ ð1� f Þe�bD2 : (42)

This is precisely the signal decay form for a non-exchanging,
two-compartment Gaussian diffusion model, which we have
already discussed, with one compartment having a diffusion
coefficient D1 and a water fraction f and the other compartment
having a diffusion coefficient D2 and a water fraction 1� f . As
before, we may assume without loss of generality that D1 � D2.
For this model, the exact values for D and K are given by eqns (22)
and (23).
Now let us consider applying eqn (37) to estimate D and K for

the signal intensity of eqn (42) with the b-values chosen, for sake
of simplicity, to be: b1 ¼ 0; b2 ¼ bmax=2; and b3 ¼ bmax: Since
there are exactly three b-values, we can apply eqns (38) and (39)
to find

Dfit � 2Dð12Þ � Dð13Þ; (43)
Figure 3. Plots showing the ratio of DKI estimates for (a) the diffusiona
two-compartment diffusion model with K ¼ 1. For this model, the water frac

from eqn (26). The DKI fits are based on eqns (43) and (44). The dotted lines ar

the DKI estimate for the kurtosis is accurate to within about 20% if f � 0:52

coefficient is accurate to within about 7% if Dbmax ¼ 2. As indicated by Table 1,
be reasonably accurate. As a comparison, also shown is (c) the ratio of the D

two-compartmentmodel. The DTI fit is calculated from eqn (35) with b1 ¼ 0 an

NMR Biomed. 2010; 23: 698–710 Copyright � 2010 John Wiley
and

Kfit � 12
Dð12Þ � Dð13Þ

D2
fitbmax

; (44)
where we have added a subscript ‘fit’ to indicate that these
estimates are based on a fit for the series approximation of eqn
(37). These ‘fit’ values may then be compared to the exact values
from eqns (22) and (23) in order to assess the accuracy obtained
by the use of eqn (37).
In Figure 3a, the ratio Kfit=K, with K being the exact kurtosis, is

plotted for K ¼ 1, 0 � f � fb , and Dbmax ¼ 1; 2, and 3. For given
values of D, K, and f, D1 was calculated from eqn (24), D2 was
calculated from eqn (25), and fb was calculated to be 3/4 from
eqn (26). We have made the choice of K ¼ 1, since this is a typical
value for brain. The curve for Dbmax ¼ 3 corresponds, for K ¼ 1, to
the bound of eqn (41). At this upper limit, the Kfit values are
accurate to within about 20% for 0:6 � f � fb. For Dbmax ¼ 2, this
20% accuracy interval grows to 0:52 � f � fb, which covers the
range for most brain regions with a bit of a margin (see Table 1). A
similar plot for Dfit=D is shown in Figure 3b. For Dbmax ¼ 3, the
accuracy is about 10% or better for the full range of f values, while
for Dbmax ¼ 2, the accuracy is better than 7%. As a comparison,
Figure 3c shows the corresponding plot for DDTI=D, where DDTI is
calculated from the usual DTI formula of eqn (35) with b1 ¼ 0 and
b2 ¼ bmax: The DTI approximation is accurate to within about
20% for Dbmax ¼ 1.
Since D � 1mm2=ms in brain, DKI with bmax ¼ 2000 s/mm2

should, based on this calculation, yield estimates for the
diffusional kurtosis with an accuracy of roughly 20% or better
and for the diffusion coefficient with an accuracy of roughly 7% or
better. This is comparable to the 20% accuracy found for the
DTI-based diffusion coefficient estimates with bmax ¼ 1000 s/mm2.
The accuracy of Kfit is, however, more strongly dependent on f
than for either Dfit or DDTI. These conclusions are, of course, all
dependent on the correctness of our assumption that biexpo-
nential signal decay is a reasonable approximation for brain.
That the series approximation of eqn (37) is fairly accurate for

brain up to b-values of 2000 to 3000 s/mm2 is consistent with
prior studies that have directly studied fits to brain signal
intensity data (4,5,40). Most prior DKI brain studies (4,5,11,
37,38,41–45) have been confined to this b-value range, although
a few have used somewhat larger maximum values (12,46,47).
l kurtosis and (b) the diffusion coefficient to the exact values for a
tion f of the fast diffusing component can vary from 0 to 0.75, as follows

e references to indicate the ideal estimate ratio of one. Plot (a) shows tha

and Dbmax ¼ 2, and plot (b) shows that the DKI estimate for the diffusion

f � 0:6 to 0.7 for normal brain, suggesting that DKI with Dbmax ¼ 2 should
TI estimate for the diffusion coefficient to the exact value for the same

d b2 ¼ bmax. The DTI estimate is accurate to within about 20% ifDbmax ¼ 1
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In practice, the optimum choice of maximum b-value, for both
DTI and DKI, is a compromise between precision and accuracy.
The effects of diffusion on the signal intensity increase with
increasing b-value, but the accuracies of eqns (33) and (37)
decrease. For MRI of the brain, empirical evidence indicates that
maximum b-values of about 1000 s/mm2 for DTI and of 2000 to
3000 s/mm2 for DKI are appropriate. For tissues other than brain,
for fixed brain tissue, or for phantoms, it is crucial that an
appropriate b-value range be independently established before
applying eqn (37). Otherwise, significant errors in parameter
estimates may occur (48).

Other signal intensity models

Eqn (36) demonstrates that the diffusional kurtosis is determined
by the small b-value behavior of SðbÞ. It is for this reason that a full
q-space imaging approach is not necessary to estimate the
kurtosis, which allows for the acquisition of a reduced data set
and for a simplified analysis method. In addition, eqn (36) sug-
gests the previously discussed fitting model based on eqn (37),
which is usually employed as a part of DKI. However, eqn (36) can
also be applied to other SðbÞ models, which may at times offer
some advantages over eqn (37).
The key requirement is that the model for SðbÞ be analytic in

the b-value about b ¼ 0. The model parameters can be related
to the kurtosis by carrying out a Taylor series for ln½SðbÞ� and
comparing the coefficients for the OðbÞ and Oðb2Þ terms with
eqn (36). For example, applying this procedure to the biexpo-
nential signal decay of eqn (42) leads directly to the expressions
of eqns (22) and (23).
Besides the two-compartment (biexponential) model, other

proposed models for SðbÞ in brain include a statistical model of
Yablonskiy and coworkers (49), a random cylinder model of Jes-
persen and coworkers (50), and Pearson distribution models of
Poot and coworkers (51). Such models may be of interest either
because they are motivated by a microscopic model of water
diffusion in brain (49,50) or because they have desirable num-
erical properties (51).
As a simple further illustration, consider the statistical model

based on a gamma distribution of diffusion coefficients. This
corresponds to a multiple compartment model where the water
fraction density for a compartment with diffusion coefficient D0 is
given by

FðD0Þ ¼ ba

GðaÞ D0ð Þa�1
expð�bD0Þ; (45)

with GðaÞ being Euler’s gamma function. The parameters a

and b set the mean (a/b) and variance (a/b2) of the gamma
distribution, and normalizability requires that both a and b be
positive. A closely related model has been previously discussed
by Jian and coworkers (52). If the individual compartments are
assumed to have Gaussian diffusion, the total signal intensity is
then

SðbÞ=S0 ¼
Z1
0

dD0FðD0Þ expð�bD0Þ ¼ ba

ðbþ bÞa : (46)

Expanding eqn (46) in powers of the b-value and comparing
with eqn (36) leads to the identifications a ¼ 3=K and b ¼ 3=KD.
View this article online at wileyonlinelibrary.com Copyrig
The signal intensity for this model then takes on the form

SðbÞ=S0 ¼ 1þ KDb

3


 ��3=K

: (47)

The requirement a > 0 means that the kurtosis must also be
positive for this model. The Taylor expansion for ln½SðbÞ� is

ln SðbÞ½ � ¼ ln S0ð Þ � bDþ 1

6
b2D2K � 1

27
b3D3K2 þ Oðb4Þ: (48)

Thus if b << 27=ð6DKÞ, then the Oðb3Þ term is dominated by the
lower order terms and fits for the model of eqn (47) will give
similar results for the kurtosis as fits for the model of eqn (37). It is
also interesting to note that the radius of convergence for the
expansion of eqn (48) is 3=DK , which is exactly the upper bound
of eqn (41).
So for sufficiently small b-values, models such as that of eqn

(47) will be effectively equivalent to the standard DKI fitting form
of eqn (37), and eqn (37) may be preferable in practice because of
its simplicity and because it allows one to avoid nonlinear fitting
procedures (37). However, for larger b-values, alternative models
may well provide a better description of the signal intensity data,
and they may be convenient and useful if high b-value data are
acquired.
A comparison of exemplary Gaussian, two-compartment, and

gamma distribution diffusion models is given in Figure 4. For
all three models, the parameters have been chosen so that
D ¼ 1mm2=ms: For the Gaussian model K ¼ 0, while for both the
two-compartment and gamma distribution models K ¼ 1. The
water fraction for the fast diffusing component of the two-
compartment model is f ¼ 2=3, which is similar to the values for
brain listed in Table 1. The water fraction densities FðD0Þ for all
threemodels are given in Figure 4a, and the corresponding signal
intensities and PDFs are given in Figures 4b and 4c. Also shown in
Figure 4b is the DKI signal intensity of eqn (37) for D ¼ 1mm2=ms
and K ¼ 1. The DKI signal intensity matches within 20% that for
the two-compartment model up to a b-value of about 3400 s/mm2

and that for the gamma distribution model up to a b-value of
about 2000 s/mm2. The PDFs of Figure 4c are for a diffusion time
of t¼100ms and assume isotropic diffusion. Note that these are
three-dimensional PDFs with dimensions of inverse volume
cubed, rather than one-dimensional PDFs for a particular diff-
usion direction. The PDF for the Gaussian model was calculated
from eqn (15), the PDF for the two-compartment model was
calculated from eqn (16) with N¼ 2, and the PDF for the gamma
distribution model was calculated by applying standard q-space
imaging techniques (31) to the signal decay form of eqn (47).
One model that is inconsistent with DKI is the stretch-

ed-exponential, which has also been applied to describe diff-
usion-weighted signal intensity data and uses the form

SðbÞ=S0 ¼ exp �ðb � DDCÞa½ �; (49)

where DDC represents a ‘distributed diffusion coefficient’ (53). For
non-integer values of a, ln½SðbÞ� has a singularity at b ¼ 0 and the
expansion of eqn (36) is not possible. So for this model, neither
the diffusion coefficient nor the diffusional kurtosis is well-
defined.
DATA ACQUISITION

In order to fully characterize the directional dependence in
anisotropic tissues, such as white matter, for both the diffusion
ht � 2010 John Wiley & Sons, Ltd. NMR Biomed. 2010; 23: 698–710



Figure 4. Plots showing (a) the water fraction densities for Gaussian, two-compartment, and gamma distribution diffusion models together with the
logarithms of the corresponding (b) signal intensities and (c) PDFs. In (a), the vertical lines for the Gaussian and two-compartment models indicate Dirac

delta functions with weights proportional to the heights of the lines. For the two-compartmentmodel, the water fraction for the fast diffusing component

is f ¼ 2=3. All three models have a diffusion coefficient of D ¼ 1mm2=ms, while the Gaussian model has a diffusional kurtosis of K ¼ 0 and the

two-compartment and gamma distributionmodels both have K ¼ 1. Also shown in (b) is the DKI signal intensity of eqn (37) forD ¼ 1mm2=ms and K ¼ 1,
which agrees relatively well with both the two-compartment and gamma distribution models up to b � 2000 s/mm2 and with the two-compartment

model up to b � 3400 s/mm2. The PDFs in (c) assume isotropic diffusion with a diffusion time of t ¼ 100ms, which yields a root-mean-square diffusion

length of
ffiffiffiffiffiffiffiffi
6Dt

p
� 24mm: The PDFs have been normalized by multiplying with a volume element of (100mm)3. The PDFs for the two-compartment and

gamma distribution models both deviate significantly from the Gaussian PDF, as is reflected by their nonzero kurtoses.
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coefficient and the diffusional kurtosis, one must determine the
diffusion and kurtosis tensors. Since the diffusion tensor has
6 degrees of freedom and the kurtosis tensor has 15 degrees of
freedom, there are a total of 21 parameters to be estimated. This
implies that at least 22 diffusion-weighted signal intensity images
must be acquired for DKI, as there is also one degree of freedom
associated with S0. It can be further shown that there must be, in
general, at least three distinct b-values and at least 15 distinct
diffusion (gradient) directions. Consistent with these basic con-
straints, a wide range of DKI data acquisition protocols are possible.
While it is valuable to consider a formal optimization of the choice
of b-values and directions (54), here we confine ourselves to
recommendations based on our experience with performing DKI
on a Siemens Trio 3T MRI scanner using a body coil for transmission
and a twelve-element phase array head coil for reception.
Early investigations of DKI utilized 6 b-values ranging from 0 to

2500 s/mm2 in increments of 500 s/mm2 (4,5). An advantage of
using more than 3 b-values is that this permits the fitting model’s
goodness-of-fit to be assessed. However, if the model (i.e.
eqn (37)) is considered valid, then we have found it more efficient
and convenient to simply use the 3 b-values of 0, 1000, and
2000 s/mm2 (37). This is a minimal extension of the usual DTI
choice of b ¼ 0 and 1000 s/mm2, and we now consider a 3
b-value protocol to be the standard in our laboratory for DKI of
brain.
Although the minimum number of diffusion directions is 15,

we typically use 30 directions for two primary reasons. First,
oversampling of the diffusion directions makes the final est-
imates for the DKI metrics less sensitive to motion artifacts, such
as those caused by cardiac-induced brain pulsation. Second, by
using more directions, one effectively averages over some of the
higher angular frequencies associated with the neglected terms
of the series expansion of eqn (36) for ln½SðbÞ�. In addition,
30 directions is a particularly convenient choice, because the
diffusion directions can then be chosen to lie on the vertices of a
truncated icosahedron (buckyball); this shape is an Archimedean
solid with 60 vertices that are all equivalent up to a rotation. Since
the diffusion-weighted signal is invariant with respect to a
reflection of the diffusion directions through the origin, only half
of these vertices need be employed.
NMR Biomed. 2010; 23: 698–710 Copyright � 2010 John Wiley
With these choices for b-values and directions, we are able to
acquire acceptable whole brain DKI data with a vendor supplied
diffusion-weighted pulse sequence (software version: VB13;
sequence name: ep2d_diff ) and the imaging parameters: voxel
size¼ 3	 3	 3mm3, field of view¼ 222	 222mm2, acquisition
matrix¼ 74	 74, number of slices¼ 39, inter-slice gap¼ 0, TE¼
96ms, TR¼ 5100ms, averages¼ 1, partial Fourier encoding¼ 3/
4, parallel imaging acceleration (GRAPPA) factor¼ 2, and b ¼ 0
averages¼ 10. The total acquisition time for this protocol is 6min
and 37 s. The data are acquired in two blocks; a main block
(acquisition time¼ 5min 26 s) with 3 b-values and 30 directions
and a secondary block (acquisition time¼ 1min 1 s) with the nine
additional b ¼ 0 images. The reason for this partitioning is that
the diffusion-weighted sequence is designed to give just one
b ¼ 0 image per average so that this is all that is obtained from
the main block. Altogether 10 b ¼ 0 images are acquired, which
allows for a sufficient amount of signal averaging. The relatively
short acquisition time is, in part, a consequence of the 100% duty
cycle achievable for this sequence on the Siemens Trio system.
In order to obtain a better resolution, we also utilize a

similar protocol, but with 2.7	 2.7	 2.7mm3 voxels, acquisition
matrix¼ 82	 82, 45 slices, TR¼ 5900ms, and two averages for
themain block. The total acquisition time for this variant is 13min
47 s. The application of partial Fourier encoding in the above DKI
protocols is helpful in reducing TE, thereby increasing the
effective signal-to-noise ratio (SNR) and reducing the acquisition
time. However, one recent study has reported significant artifacts
in diffusion-weighted images associated with partial Fourier
encoding (55). These were shown to result from motion induced
by mechanical vibrations and could be eliminated by using full
Fourier encoding. Such artifacts have not been evident with our
DKI protocols, but their origin suggests that they may be strongly
dependent on both imaging protocol details and the particular
mechanical properties of the MRI scanner.

POST-PROCESSING

Just as for DTI, there are a variety of post-processing methods for
DKI data. As an example, we describe here one approach based
on a 3 b-value data acquisition. It differs from a previously
& Sons, Ltd. View this article online at wileyonlinelibrary.com
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proposed method (5) mainly in that it exploits the use of exactly
3 b-values and in that it applies some new analytic formulae for K ;
Kjj; and K?:
Let us assume we have a set of images that, following the usual

steps of co-registration, averaging, and (optionally) smoothing,
consist of one b ¼ 0 image and, for each of N (� 15) diffusion
directions, two b > 0 images. We then calculate for each dir-
ection, on a voxel-by-voxel basis, a diffusion coefficient and a
diffusional kurtosis by applying eqns (38)(40) with b1 ¼ 0. For the
two b > 0 b-values, b2 and b3, we assume b3 > b2.
Because of noise, motion, and/or imaging artifacts, it is likely

that some fraction of the calculated diffusion coefficients and
diffusional kurtoses will lie outside a range considered physically
acceptable. We typically require that the diffusion coefficients be
positive and that the kurtoses lie between a predefinedminimum
value, Kmin, and a predefined maximum value, Kmax. Any outlier
values are systematically brought into this range. For example, if
the diffusion coefficient is calculated to be less than zero, then
both the diffusion coefficient and the kurtosis are reset to zero. In
this manner, the effect of noise, motion, and imaging artifacts on
the final diffusion metric maps can be substantially reduced. The
parameter Kmin is always between �2 (the theoretical kurtosis
minimum) and 0, with 0 being the standard choice. The para-
meter Kmax is set to C=ðb3DÞ, where C � 3 and D is the diffusion
coefficient for the given direction. The constant C is normally set
to a value of 3 in order to be consistent with the condition of
eqn (41).
F1 l1; l2; l3ð Þ � l1 þ l2 þ l3ð Þ2

18 l1 � l2ð Þ l1 � l3ð Þ

ffiffiffiffiffiffiffiffiffiffi
l2l3

p

l1
RF

l1

l2
;
l1

l3
; 1


 �
þ 3l21 � l1l2 � l2l3 � l1l3

3l1
ffiffiffiffiffiffiffiffiffiffi
l2l3

p RD
l1

l2
;
l1

l3
; 1


 �
� 1

� �
; (56)

and

F2 l1; l2; l3ð Þ � l1 þ l2 þ l3ð Þ2

3 l2 � l3ð Þ2
l2 þ l3ffiffiffiffiffiffiffiffiffiffi

l2l3
p RF

l1

l2
;
l1

l3
; 1


 �
þ 2l1 � l2 � l3

3
ffiffiffiffiffiffiffiffiffiffi
l2l3

p RD
l1

l2
;
l1

l3
; 1


 �
� 2

� �
: (57)
The next step is to calculate the diffusion tensor, for each voxel,
using the N calculated diffusion coefficients. This is performed
exactly as for DTI by solving a linear system for the tensor
components (6). The diffusion tensor and eqn (9) are then applied
to determine, for each direction, a recalculated diffusion coeffi-
cient, D

ðRÞ
i , i ¼ 1; 2; . . . ;N, with the subscript i indicating the

direction. From these, a recalculated diffusional kurtosis is found
from

K
ðRÞ
i ¼ 6

D
ðRÞ
i � D

ð13Þ
i

ðb1 þ b3Þ D
ðRÞ
i

h i2 ; (50)

so as to be consistent with the recalculated diffusion coefficients.
Any of the recalculated diffusion and kurtosis values outside the
specified physical range for these parameters are again corrected.
This recalculation procedure helps to further suppress the effects
of noise.
The kurtosis tensor is then found from the diffusion tensor and

the set of N recalculated kurtosis values by the solving a linear
system (5). This linear system has N equations, which determine
the 15 degrees of freedom for the kurtosis tensor.
In order to calculate the diffusion metrics of most interest, it is

convenient to first rotate each voxel’s coordinate system so that
the diffusion tensor is diagonal, with the eigenvalues l1 � l2
View this article online at wileyonlinelibrary.com Copyrig
� l3. As is well known (9), the MD and FA are then given by

D ¼ 1

3
l1 þ l2 þ l3ð Þ; (51)

and

FA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 � l2ð Þ2þ l1 � l3ð Þ2þ l2 � l3ð Þ2

2 l21 þ l22 þ l23
� �

s
: (52)

In addition, the axial and radial diffusivities can be calculated
from

Djj ¼ l1; (53)

and

D? ¼ 1

2
l2 þ l3ð Þ: (54)

These four DTI metrics are not all independent since
D ¼ ðDjj þ 2D?Þ=3.
Similar, albeit more complicated formulae, can also be given for

the mean, axial, and radial kurtoses. For the MK, we have

K ¼ F1 l1; l2; l3ð Þ ~W1111 þ F1 l2; l1; l3ð Þ ~W2222

þ F1 l3; l2; l1ð Þ ~W3333 þ F2 l1; l2; l3ð Þ ~W2233

þ F2 l2; l1; l3ð Þ ~W1133 þ F2 l3; l2; l1ð Þ ~W1122;

(55)

where ~Wijkl are components of the kurtosis tensor in the frame of
reference that diagonalizes the diffusion tensor,
In eqns (56) and (57), RF and RD represent Carlson’s elliptic
integrals (56,57). The derivation of eqns (55)–(57) may be
accomplished by explicitly performing the surface integral of eqn
(6) with the help of eqns (9) and (10). The functions F1 and F2 have
removable singularities when two or more of the eigenvalues
coincide; these should be carefully treated in any numerical
implementation.
For the axial kurtosis, the corresponding expression is

Kjj ¼
l1 þ l2 þ l3ð Þ2

9l21
~W1111; (58)

and for the radial kurtosis, it is

K? ¼ G1 l1; l2; l3ð Þ ~W2222 þ G1 l1; l3; l2ð Þ ~W3333

þ G2 l1; l2; l3ð Þ ~W2233; (59)

where

G1 l1; l2; l3ð Þ ¼ l1 þ l2 þ l3ð Þ2

18l2 l2 � l3ð Þ2
2l2 þ

l23 � 3l2l3ffiffiffiffiffiffiffiffiffiffi
l2l3

p

 �

; (60)

and

G2 l1; l2; l3ð Þ ¼ l1 þ l2 þ l3ð Þ2

3 l2 � l3ð Þ2
l2 þ l3ffiffiffiffiffiffiffiffiffiffi

l2l3
p � 2


 �
: (61)
ht � 2010 John Wiley & Sons, Ltd. NMR Biomed. 2010; 23: 698–710



Figure 5. DKI diffusion metric maps for a single axial slice together with a T2-weighted (b ¼ 0) image from one normal subject. The diffusion-weighted
data were acquired at 3T with b-values of 0, 1000, and 2000 s/mm2. The maps for FA, D; Djj; and D? are similar to those typically obtained with DTI. The

maps for K; Kjj; and K? provide additional information that quantify diffusional non-Gaussianity. The calibration bars for the diffusivities are in units of

mm2/ms, while those for the FA and kurtoses are dimensionless.

QUANTIFICATION OF NON-GAUSSIAN WATER DIFFUSION BY KURTOSIS
We emphasize again that this radial kurtosis differs from that
defined by Hui and coworkers (11). Note the removable
singularities for G and G .
1 2

By applying the eqns (55)–(61), DKI provides three metrics of
diffusional non-Gaussianity, in addition to the diffusion metrics
routinely found with DTI. In principle, DKI can provide even more
newmetrics, since the kurtosis tensor has 15 degrees of freedom.
In fact, the components of the kurtosis tensor in the frame of
reference that diagonalizes the diffusion tensor can all be
regarded as rotational invariants and hence as possible metrics
of interest. Alternatively, one may define ‘eigenvalues’ for the
kurtosis tensor, which are also candidates for useful diffusion
measures (58–60). However, for isotropic diffusion, such as is a
good approximation for gray matter, the only two independent
diffusion measures that can be obtained with DKI are the MD and
the MK.
Sample parametric maps obtained with the above procedure

are shown in Figure 5. The diffusion-weighted imaging data for
these maps were obtained on a Siemens 3T scanner using the
protocol described under Data Acquisition with 2.7	 2.7	
2.7mm3 voxels and two averages. The subject gave informed
consent and the protocol was approved by the New York
University School Medicine Institutional Review Board. Post-
Figure 6. Whole brain distribution plots for DKI diffusion metrics for the sam

eachwith a thickness of 2.7mm. Voxels withD > 1:5mm2/ms were excluded, a
voxels, corresponding to a total volume of 1060.5 cm3, and a bin size of 0.02 (

average values� standard deviations.

NMR Biomed. 2010; 23: 698–710 Copyright � 2010 John Wiley
processing used Kmin ¼ 0 and C ¼ 3. In Figure 6, the correspond-
ing whole brain parametric distribution plots are shown. Voxels
with MD values above 1.5mm2/ms were excluded since they were
presumed to contain substantial amounts of CSF. The distribution
plot for the MK appears bimodal, reflecting the different kurtoses
for gray and white matter. The average MD and MK values of
Figure 6 are similar to the ones listed in Table 1, even though they
were derived using different signal intensity models.
CONFOUNDING FACTORS

It is important to bear in mind that there are a number factors
that can lead to errors in diffusional kurtosis values as estimated
with DKI, which are essentially the same those that can lead to
errors for DTI (61). These include inhomogeneous T2 relaxation,
gradient pulse duration effects, motion, imaging artifacts, per-
fusion, CSF contamination, inaccuracy of fitting model, not fully
accounting for imaging gradient contributions to b-values, and
noise, and the influence of these factors may depend on the
diffusion time. So the moniker ‘apparent’ is well-deserved for
both MRI-estimated diffusion coefficients and diffusional kur-
toses. Although the accuracy of DTI or DKI parameter estimates
e subject as in Fig. 5. The distributions were calculated from 45 axial slices

s they likely contained high amounts of CSF. Each plot was based on 53,881
in units of mm2/ms for the diffusivities). The values in the legends indicate

& Sons, Ltd. View this article online at wileyonlinelibrary.com
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may be modest, the precision can be relatively high for carefully
performed experiments. The reproducibility the DKI measures of
non-Gaussianity is similar to that for standard DTI metrics.
For DKI, noise is particularly important due to the use of higher

maximum b-values than for DTI, and an inadequate SNR tends to
cause overestimation of kurtosis values. At 3T, the globus pallidus
provides a useful test of the SNR. If the SNR is adequate, its MK
value in normal brain should be similar to that of other gray
matter regions (see Table 1). However with a low SNR, the globus
pallidus MK can become relatively elevated because the SNR
effect is enhanced by the comparatively short T2 for the globus
pallidus. Noise correction procedures that have been developed
for diffusion-weighted imaging (62) should be beneficial for DKI,
although this has yet to be systematically explored.
Perfusion affects diffusion-weighted imaging through the

intravoxal incoherent motion (IVIM) mechanism (63). The IVIM
effect is usually small in normal brain, due to low blood volume
and a short T2 for venous blood, but this is potentially not the
case for some brain tumors with high blood volumes. IVIM alters
the diffusion-weighted signal intensity primarily for b-values in
the range of 0 to 300 s/mm2 (64,65), and diffusion-weighted data
for this range should be examined when applying DKI to tumors.
If IVIM effects are substantial for low b-values, then a DKI analysis
could be applied with a minimum b-value set to approximately
300 s/mm2 in order to reduce the influence of perfusion on
estimates for DKI diffusion metrics.
APPLICATIONS

DTI is a mature imaging technique with several established brain
applications, including ischemic stroke, brain tumors and fiber
tracking (66–69). DKI, on the other hand, is still in an early stage of
development, and its practical utility remains to be proven.
However, since DKI is an extension of DTI and enables the
calculation all the usual DTI metrics, it is natural to speculate that
DKI will be useful for many of the same applications as DTI. The
potential advantage of DKI over DTI is that the added metrics
quantifying diffusional non-Gaussianity may supply new infor-
mation to better characterize both normal and pathological brain
tissue. This may be particularly important in gray matter, since
gray matter diffusion is nearly isotropic which limits the value of
the FA and other metrics of diffusional anisotropy obtainable with
DTI.
Diffusional kurtosis metrics may complement diffusion coeffi-

cient metrics in at least two general ways. First, the diffusional
kurtosis can potentially be more sensitive to some tissue pro-
perties, such as heterogeneity, or as illustrated by the Kärger
model, water exchange. Second, the diffusional kurtosis may be
less sensitive to certain confounding effects and thereby serve as
a more robust biomarker. One study, for example, has found that
the MK in gray matter is altered substantially less by CSF
contamination than either the MD or FA (70).
A few studies have already given encouraging, if very

preliminary, results for the application of DKI to ischemic stroke
(3,71,72), aging (42), Alzheimer’s disease (73), schizophrenia (74),
and attention deficit hyperactivity disorder (75). In addition, it has
been shown that the extra information provided by DKI can be
used to resolve intravoxel fiber crossings (38), which is not
possible with DTI; as a consequence, DKI could be used to
improve upon standard DTI-based fiber tracking.
View this article online at wileyonlinelibrary.com Copyrig
Key advantages of DKI relative to other methods of quantifying
diffusional non-Gaussianity are that its diffusion metrics are
model independent and that it can be readily applied to clinical
scanning. Q-space imaging methods can, in principle, calculate
the same diffusion metrics as DKI, but the acquisition times and
hardware requirements are substantially higher (32). In particular,
q-space imaging methods typically utilize much larger maximum
b-values than DKI. Multiple compartment models often provide a
good fit to diffusion-weighted signal intensity data (16), but the
interpretation of the model parameters may not always be clear
(40). However, multiple compartment models are compatible
with DKI and can be used to calculate the diffusional kurtosis as
suggested by eqn (20). Stretched-exponential fits to diffusion-
weighted signal intensity data (53), in contrast, are inconsistent
with DKI and do not lead to meaningful kurtosis estimates.
CONCLUSION

DKI is a clinically feasible extension of DTI that allows for
quantification of diffusional non-Gaussianity. With DKI, one
obtains all the usual DTI diffusion metrics plus additional metrics
related to the diffusional kurtosis. These new metrics can help to
better characterize the water diffusion properties of brain tissue
and, in particular, are sensitive to diffusional heterogeneity.
Implementation of DKI is similar to DTI, except that at least 3
distinct b-values and 15 distinct diffusion directions are needed.
A whole brain DKI data set with 3	 3	 3mm3 isotropic voxels
can be acquired with clinical 3T MRI scanners in less than 7min.
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52. Jian B, Vemuri BC, Özarslan E, Carney PR, Mareci TH. A novel tensor
distributionmodel for the diffusion-weightedMR signal. Neuroimage.
2007; 37: 164–1176.

53. Bennett KM, Schmainda KM, Bennett RT, Rowe DB, Lu H, Hyde JS.
Characterization of continuously distributed cortical water diffusion
rates with a stretched-exponential model. Magn. Reson. Med. 2003;
50: 727–734.

54. Poot DHJ, den Dekker AJ, Verhoye M, Blockx I, Van Audekerke J, Van
Der Linden A, Sijbers J. Optimizing the diffusion weighting gradients
for diffusion-kurtosis imaging Proceedings of the 17th Annual Meeting
of ISMRM Honolulu, USA 2009; 1394.

55. Gallichan D, Scholz J, Bartsch A, Behrens TE, Robson MD, Miller KL.
Addressing a systematic vibration artifact in diffusion-weighted MRI.
Hum. Brain Mapp. 2010; 31: 193–202.

56. Carlson BC. Computing elliptic integrals by duplication. Numer. Math.
1979; 33: 1–1-16.

57. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes
in C: The Art of Scientific Computing. Cambridge University Press: New
York, 1992; 261–271.

58. Qi LQ, Wang YJ, Wu EX. D-eigenvalues of diffusion kurtosis tensors.
J. Comp. Appl. Math. 2008; 221: 150–157.

59. Qi LQ, Han DR, Wu EX. Principal invariants and inherent parameters of
diffusion kurtosis tensors. J. Math. Anal. Appl. 2009; 349: 165–180.
& Sons, Ltd. View this article online at wileyonlinelibrary.com

7
0
9



J. H. JENSEN AND J. A. HELPERN

7
1
0

60. Sigmund EE, Lazar M, Jensen JH, Helpern JA. In vivo imaging of
kurtosis tensor eigenvalues in the brain at 3 T. Proceedings of the 17th
Annual Meeting of ISMRM, Honolulu USA 2009; 360.

61. Qin W, Yu CS, Zhang F, Du XY, Jiang H, Yan YX, Li KC. Effects of echo
time on diffusion quantification of brain white matter at 1.5 T and
3.0 T. Magn. Reson. Med. 2009; 61: 755–760.

62. Dietrich O, Heiland S, Sartor K. Noise correction for the exact deter-
mination of apparent diffusion coefficients at low SNR. Magn. Reson.
Med. 2001; 45: 448–453.

63. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet
M. Separation of diffusion and perfusion in intravoxel incoherent
motion MR imaging. Radiology. 1988; 168: 497–505.

64. Maier SE, Bogner P, Bajzik G, Mamata H, Mamata Y, Repa I, Jolesz FA,
Mulkern RV. Normal brain and brain tumor: multicomponent apparent
diffusion coefficient line scan imaging. Radiology. 2001; 219: 842–849.

65. Maier SE, Mamata H, Mulkern RV. Characterization of normal brain and
brain tumor pathology by chisquares parameter maps of diffusion-
weighted image data. Eur. J. Radiol. 2003; 45: 199–207.

66. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N,
Chabriat H. Diffusion tensor imaging: concepts and applications.
J. Magn. Reson. Imaging. 2001; 13: 534–546.
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