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Body Diffusion Kurtosis Imaging: Basic
Principles, Applications, and
Considerations for Clinical Practice

Andrew B. Rosenkrantz, MD,"* Anwar R. Padhani, MB, BS,?
Thomas L. Chenevert, PhD,® Dow-Mu Koh, MD, MRCP, FRCR,*
Frederik De Keyzer, MSc,” Bachir Taouli, MD,® and Denis Le Bihan, MD, PhD’

Technologic advances enable performance of diffusion-weighted imaging (DWI) at ultrahigh b-values, where standard
monoexponential model analysis may not apply. Rather, non-Gaussian water diffusion properties emerge, which in cellu-
lar tissues are, in part, influenced by the intracellular environment that is not well evaluated by conventional DWI. The
novel technique, diffusion kurtosis imaging (DKI), enables characterization of non-Gaussian water diffusion behavior.
More advanced mathematical curve fitting of the signal intensity decay curve using the DKI model provides an addi-
tional parameter K, that presumably reflects heterogeneity and irregularity of cellular microstructure, as well as the
amount of interfaces within cellular tissues. Although largely applied for neural applications over the past decade, a
small number of studies have recently explored DKI outside the brain. The most investigated organ is the prostate, with
preliminary studies suggesting improved tumor detection and grading using DKI. Although still largely in the research
phase, DKl is being explored in wider clinical settings. When assessing extracranial applications of DKI, careful attention
to details with which body radiologists may currently be unfamiliar is important to ensure reliable results. Accordingly, a
robust understanding of DKl is necessary for radiologists to better understand the meaning of DKI-derived metrics in
the context of different tumors and how these metrics vary between tumor types and in response to treatment. In this
review, we outline DKI principles, propose biostructural basis for observations, provide a comparison with standard
monoexponential fitting and the apparent diffusion coefficient, report on extracranial clinical investigations to date, and
recommend technical considerations for implementation in body imaging.
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iffusion-Weighted Imaging (DWI) has become estab-

lished as a powerful magnetic resonance imaging

for computing a parametric map that allows quantitative

assessment of the tissue’s water diffusion behavior. In clinical

(MRI) technique for evaluating pathology throughout the
body and is now routinely incorporated into many body
MRI protocols, mainly in oncology.”? DWI is performed
by serially imaging the same tissue while varying the degree
of water diffusion sensitization. The imaging gradient
strength, direction, and temporal profile affect sensitivity to
diffusion and are commonly reduced to a single simplified
parameter referred to as the b-value [unit: s/mm?]. The
images obtained at different b-values are subsequently used

body imaging, DWI is typically performed using b-values
up to 800-1000 s/mm?, and subsequent quantification is
typically performed using a monoexponential fit.” For sim-
plicity, this model assumes Gaussian (free) diffusion behav-
ior, in which free tissue diffusion would yield a normal
distribution of tissue diffusivities. This Gaussian diffusion
behavior would result in linear decay of the natural loga-
rithm of the DWI signal intensity (SI) as the b-value
increases, the slope of which is referred to as the apparent
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diffusion coefficient (ADC; unit: X10™ > mm®/s, um*/msec,
or X10% um?/s) to emphasize that it is not the real diffu-
sion coefficient.” ADC is derived from the equation:
S;=8y * el 76#4DC) in which S, is the SI at b-value b;, and
So represents the estimated SI at a b-value of 0 in the
absence of any noise contribution.

Historically, MRI scanners were limited in their abil-
ities to obtain images at b-values greater than 1000 s/mm?>
due to insufficient signal-to-noise ratio (SNR) and increased
anatomic distortions resulting from field inhomogeneity and
induced eddy currents. However, improvements in hardware
and software within modern MRI systems now enable the
acquisition of ultrahigh b-value images (>1000 s/mm®),
which when acquired with good image SNR have been
shown to enhance clinical disease assessment for prostate
cancer detection and glioma characterization.*’ Acquiring
DWI at ultrahigh b-values often reveals the presence of
non-Gaussian diffusion effects, thus requiring a more
sophisticated model for analysis. One such model is termed
diffusion kurtosis imaging (DKI), which potentially provides
more information on tissue structure than does standard
monoexponential analysis for b-values less than 1000 s/
mm?. DKI was first described by studies in 2004 © and
2005 7 and initially was applied exclusively for brain imag-
ing.”®? However, in recent years studies have shown the
feasibility of applying DKI at
sites.'®™"? Therefore, body radiologists may benefit through

multiple extracranial
a better understanding of the major concepts of DKI. In
this article, we review the basic principles of DKI, proposed
biologic correlates, technical considerations to facilitate clini-
cal translation, and potential applications outside the brain

reported within the recent peer-reviewed literature.

DKI: Underlying Model

Past studies have reported on the potential value of DWI
using b-values over 1000 s/mm” in oncologic applications,
almost all showing improved tumor conspicuity against a
fading background signal intensity on the ultrahigh b-values

14-16 .
However, these studies have commonly post-

images.
processed the image sets using a standard monoexponential
fit to obtain ADC maps.'"”™"> While this approach may
appear straightforward, there is an assumption of monoex-
ponential behavior of water diffusivity. The monoexponen-
tial model, which applies a linear fit to the natural
logarithm of the SI, is reasonable at b-values up to ~600-
1000 s/mm”, depending on the given tissue. However, as
the b-value increases, the logarithmic SI decay plot no lon-
ger maintains a linear shape, but rather exhibits a distinct
curvature with a positive deviation from the plot of the
monoexponential model 7 (Fig. 1). This curvature indicates
the presence of water diffusion behaviors away from Gaus-
sian predictions, and accordingly, that alternate models

should be applied when observed.”
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FIGURE 1: Comparison of diffusion signal intensity decay plots
for monoexponential model, reflecting solely Gaussian diffu-
sion, and kurtosis model, reflecting both Gaussian and non-
Gaussian diffusion components.

DKI analyses non-Gaussian water diffusivity using a

polynomial model according to the following equation:
—, L2 aD? . .

S,:So*e( bixDappterbi+Diyy*Kay) Ty comparison with the
monoexponential equation, this equation yields two varia-
bles (Dpp
K,pp represents the apparent diffusional kurtosis (unitless),
and D,

um?*/msec, or X10° um?/s) that is corrected to account for

and K,p,) when Sy is known. The parameter
is the diffusion coefficient (unit: X10~> mm?/s,

the observed non-Gaussian behavior. For histogram descrip-
tions, a distribution with greater kurtosis has a more peaked
distribution in comparison with a normal distribution (Fig.
2). Accordingly, K,
of tssue diffusivities that occurs in the setting of non-

reflects the more peaked distribution

Gaussian diffusion behavior. K, is determined by the SI
decay curvature away from the plot that would be predicted

by a monoexponential fit,” whereas D,,, is determined by

the slope of the SI decay plot as b appropapches 0.

Not only does the DKI model potentially better reflect
water diffusivity in tissues at ultrahigh b-values, it also pro-
vides an additional parameter Ky, that contains specific
information on the non-Gaussian diffusion behavior. Thus,
the DKI model provides radiologists with an opportunity to
potentially gain further insights into tissue characteristics
than are obtained through standard DWI. Other models for
fitting extended diffusion data are described, including the
biexponential model that separates the water diffusivity into
two components (fast and slow, with their respective relative
the stretched-

exponential model that views water diffusion as comprising

volumes and diffusivities), as well as
multiple Gaussian compartments with a wide distribution of

. . .. 2021 . . . .
diffusivities. However, given the noise inherent in
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Positive kurtosis

Zero kurtosis

FIGURE 2: Comparison of Gaussian distribution (blue curve)
with kurtosis of 0 and non-Gaussian distribution (red curve)
with greater peak and consequent positive kurtosis.

clinical datasets, the DKI model is potentially the most
pp and

K,pp) that need to be estimated when Sy is known or can be
derived.>!?

robust, as it has only two unknown parameters (D,

Biostructural Basis

K,pp is a phenomenological parameter,”” supported by
observations of it providing excellent mathematical fitting of
the SI decay plot at very high b-values (although lower than
2500-3000 s/mm?).> It has no direct biophysical basis and
in this sense it is similar to ADC, which also represents an
"apparent” parameter that has only indirect biophysical cor-
relates. Nonetheless, the underlying basis of DKI metrics
have been hypothesized.” Tissue ADC measurements at b-
values less than 1000 s/mm? have been ascribed as a mea-

sure largely of the extracellular space,*

reflecting  the
extent to which water molecules are hindered outside of
cells and so are influenced by tissue architectural properties
that include vessels, ducts, and extracellular space tortuosity.
Thus, cellular arrangements, cell size distributions, cellular
density, extracellular space viscosity, glandular structures,
and integrity of membranes all have the potential to modu-
late extracellular space water motion. Accordingly, reduced
ADC has often been attributed to increasing cellular density,
given the effect of hydrophobic cell membranes in limiting
extracellular water motion.” However, the degree of water
hindrance scaling with respect to cellularity is dependent on
a uniform distribution of cell sizes, and the inverse relation-
ship between cellularity and ADC does not apply to all tis-
sues. For example, in bone marrow the presence of smaller
sized hematopoietic cells intermixed with larger fat cells ini-
tially increases ADC with increasing cellularity.” 24 Radiol-
ogists should also note that ADC correlates are not specific
for the effects of cellularity on water motion, which can also
be hindered simply by the presence of a greater concentra-
tion of macromolecules and increased viscosity.”

In comparison, K, of tissues has been hypothesized
at least in part to represent the direct interaction of water
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molecules with cell membranes and intracellular com-

>7:22 although is also influenced by other extracellu-

pounds,
lar factors that are difficult to separate. Le Bihan *° suggests
that water is not a homogeneous substance at the nano-
scopic level, given the polar nature of the water molecule,
which results in the formation of network clusters with dif-
fering degrees of hydrogen bonding and tetrahedrality. Fur-
thermore, liquid water may form 3D arrays in the presence
of interfaces with charged materials such as polarized cell or
organelle membranes or protein molecules. Extensive self-
associations of water within charged environments result in
organization of water molecules into layers with reduced dif-
fusivity. In cells, proteins have an especially profound effect
on water, given their presence of a charge that results in
protein—water adsorption. These factors, taken together, may
result in the marked hindrance of water motion, contribut-
ing to non-Gaussian diffusion observations. Increased kurto-
sis is suggested to occur in the setting of more irregular and
heterogeneous environments with many or large interfa-

,26
CCS,7

including the increased nuclear-cytoplasmic ratio of
tumor cells. Kurtosis measurements potentially have greater
specificity to reveal water interactions within cell and tissue
components.” A prior study using a synthetic tumor cell
environment that observed diffusion signal intensities to be
sensitive to intracellular architecture but not to overall cell
density supports the relationship between ultrahigh b-value
DWI and Studies that

observed associations between DKI metrics and microstruc-

intracellular water behavior.””
tural properties of prostate cancer support this framework as
well.***? Nonetheless, work remains to be done to fully
understand the mechanisms underlying non-Gaussian diffu-
sion, including other noncell-based influences and the pre-

cise biostructural significance of K.

Acquisition and Postprocessing
Considerations

In this section, we provide technical recommendations to
guide body radiologists in implementing DKI in routine
clinical practice. Table 1 provides general considerations,
while Table 2 provides the specific acquisition parameters
for a representative sample protocol for performing DKI of
the prostate.

Image Acquisition

DKI is acquired using a standard DWI sequence available
on current-generation scanners, albeit incorporating ultra-
high b-values. Whereas standard DWI requires acquisition
of only two b-values for the calculation of ADC, DKI
requires acquisition of at least three distinct b-values given
an additional unknown variable (K,,,) within the formula.’
In practice, we suggest acquiring more than three b-values,
including at least two b-values both above and below
1000 s/mm?, to facilitate the successful capture of the non-
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Factor Suggestion

Underlying pulse

sequence

mum possible TE

Number of b-values

Minimum b-value

(IVIM DWT)
Maximum b-value
Number of directions

SNR considerations

Postprocessing

TABLE 1. Technical Considerations for Body Applications of DKI

Standard diffusion-weighted pulse sequence (spin-echo echo-planar imaging) with mini-

At least 3 b-values needed; at least 2 b-values both above and below b1000 s/mm® may
facilitate robust estimates of D,p, and K,

Although b0 is acceptable, b-values >200 s/mm? are preferred to reduce perfusion effects.
b-values in the 0—200 s/mm? range are useful only when also estimating perfusion effects

At least 1500 s/mm?; avoid excessively high b-values (over ~3000 s/mm?)
Three directions sufficient; acquiring full tensor not necessary

Sufficient SNR critical; consider increasing number of averages, adjusting image geometry,
and employing mathematical noise compensation algorithms

Dedicated postprocessing software that generates, at 2 minimum, Kapp and D

app Maps

Gaussian behavior. If the maximal b-value is not high
enough, then the deviation of the curvature of the SI decay
plot away from Gaussian will not be captured, and the abil-
ity of the sequence to measure non-Gaussian diffusion
behavior decreases substantially.’® In the brain, DKI is per-
formed using a maximal b-value in the range of 2000-
3000 s/mm”.”>* However, excessively high b-values over
3000 s/mm” lead to SI measurements that violate assump-
DKI model and are

tions of the therefore discour-

TABLE 2. Acquisition Parameters for Sample
DKI Protocol of the Prostate

Parameter Sample value

Pulse sequence Free-breathing spin-echo

fat-suppressed echo-planar

imaging
TR 3000 msec
TE 70 msec
FOV 260 mm x 80% rectangular FOV

Acquisition matrix
Slice thickness

Averages

100 x 100 (before interpolation)
4 mm
10 (for the largest b-values)

Parallel imaging 2
reduction factor

Receiver 2000 Hz/voxel

bandwidth

b-values 200, 500, 1000, 1500, 2000
(sec/mm?)

Diffusion Three-directional trace
directions

aged.”'*223%  Q_space imaging is a related diffusion
technique that, although employing much larger b-values
than those used for DKI, also provides estimates of K.***3°
This more advanced technique has greater hardware, acqui-
sition time, and postprocessing requirements and is beyond
the scope of this article.”°

Compared with the brain, tissues in the body generally
exhibit faster signal decays at increasing b-values, as well as
faster 7, decays.’® Moreover, larger-sized torso coils have
less ideal receptivity and geometry in comparison with head
coils. Therefore, the optimal choice of maximal b-value for
DKI in body applications is lower than in the brain. Indeed,
non-Gaussian behavior of the SI decay plot can be success-
fully captured at a maximal b-value of ~1500-2000 s/mm®
in body imaging.'"*”*®* On this basis, we suggest that a
maximal b-value in this range may be appropriate for DKI
body applications.

Selection of the minimal b-value for DKI should take
into account sensitivity to intravoxel incoherent motion
(IVIM) effects that are visible at very low b-values (typically
lower than 400 s/mm?). These b-values are theoretically far
from the high b-values used for DKI, such that the acquisi-
tion of multiple, very low b-value images, although standard
for IVIM assessment, is, in principle, not needed when per-
forming DKI.>* While a minimal b-value of 0 is acceptable,
a higher minimal b-value of >200 s/mm? may be useful to
mitigate the effect of capillary perfusion on SI measure-
ments occurring at lower b-values.?®*® Nonetheless, because
signals are noisy, curve-fitting algorithms may incorrectly
assign part of the signal curvature to either IVIM or kurtosis
effects, thus misestimating model parameters.12 Alterna-
tively, obtaining a few lower b-value images (b-values less
than 1000 s/mm?), in addition to the high b-values that are
required for DKI, may be considered, with recent work
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demonstrating the ability to perform a comprehensive analy-
sis incorporating both TVIM and DKI effects.'>*°
In order for the calculated DKI metrics to be accurate,
it is critical for the high b-value images to exhibit sufficient
SNR.** Otherwise, the SI decay plot approaches the "noise
floor," which in turn leads to an artifactual curvature of the
1241
app- ¢

rate at which signal approaches the noise floor depends on

SI decay plot and yields biased estimates of K

diffusion properties of the tissue itself. That is, it is conceiv-
able to have adequate SNR for K,,, estimation in one
region (eg, high-grade prostate tumor) and inadequate SNR,
leading to biased K

app €stimation in adjacent tissue (eg, nor-
mal prostate parenchyma). Consistently obtaining sufficient
SNR at high b-values is particularly challenging in body
imaging, given not only faster signal decays, but also the
tendency to use faster acquisitions to compensate for respi-
ration and other sources of motion. Therefore, it may be
necessary to reduce the spatial resolution or increase the
number of signal averages to maintain SNR. When allocat-
ing the number of averages, fewer averages may be required
for the lower b-values, thereby enabling more averages to be
allocated to the high b-value images, thus increasing their
SNR. Given the pronounced SNR demands of DKI, opti-
mized sequence parameters are likely to be different from
that of conventional DWT in the same tissue.

As breath-hold imaging is associated with significantly
reduced SNR for DWI** either respiratory-triggered or
free-breathing acquisitions are needed. Using the minimal
possible echo time also helps raise SNR, which is facilitated
at ultrahigh b-values through high-performance gradient sys-
tems. Use of a 3T system, when available, substantially
improves SNR as well. Even with these considerations, SNR
may still be insufficient. Post-hoc corrections of "noise
floor" effects in the signal remain challenging, although
some simple techniques have been proposed for clinical
practice.>*" Such techniques show an improved reliability
of DKI measurements and may be an important step
towards achieving routine clinical applicability of DKI in
the body.'” When incorporating noise compensation, an
SNR of at least 2 on the high b-value images has been sug-
gested as a minimum threshold for allowing for a reasonable
estimate of Kapp.41 However, even higher SNR is preferred,
to the extent achievable.

As already noted, DKI requires a minimum of only
three b-values. In fact, it may be advantageous to avoid
acquiring an excessive number of b-values.”® A very large
number of b-values increases the overall scan time, both
increasing the likelihood of motion artifact and hindering
incorporation of DKI into clinical protocols. On the other
hand, a limited number of b-values in both high (500-
1000) and ultrahigh (1500-2000) b-value ranges may be
useful for successfully capturing the monoexponential and
non-Gaussian components, respectively, of the SI decay
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curve. Therefore, the optimal number of b-values to obtain,
as well as their distribution across the acquired range of b-
values, cannot be strictly prescribed and will depend on the
clinical application, desire to obtain simultaneous IVIM
and/or ADC estimates, expected SNR, likelihood of motion
artifacts, scanner capability, and available imaging time.
Some studies report performing kurtosis assessment of
the full multidirectional diffusion tensor, described as diffu-
sion kurtosis tensor imaging (DKTI).**** This approach
acquires diffusion images in at least 15 different directions
in order to assess the anisotropic directionality of diffusion
and kurtosis behavior.” Similar to the above consideration of
the number of b-values, acquisition of this many directions
is not necessary for oncologic DKI. Rather, DKI can be per-
formed based on a directionless "trace” of the diffusion ten-
sor, which requires acquisition of only three directions.”
Given the prohibitive scan time of the 15 directions needed
to perform DKTI, DKI of the body has been performed
overwhelmingly in a directionless fashion. This scheme
highlights that DKI does not require tissue anisotropy and
indeed provides markedly distinct information compared
with DTI-derived metrics such as fractional anisotropy.”
Finally, although not a parameter routinely manipu-
lated by radiologists, the diffusion time, DT, indicating the
time between onset of the two lobes of the diffusion-
encoding gradient, also impacts kurtosis estimates, given the
greater physical diffusion distances probed with increasing
DT. A short DT is advised in order to be sensitive to
obstacles to non-Gaussian water diffusion that occur at short
length scales and that influence K, as well as to mitigate
water exchange between tissue compartments that occurs at
longer DT K,pp increases as DT increases from a short
DT, reaching a peak value at an intermediate DT, and sub-
sequently decreases with further increases in DT, ultimately

. 26,40 . . .
approaching zero. In comparison, D, is relatively less

app
sensitive to DT length.*” Shorter DT may be achieved by
minimizing TE times, which is facilitated through use of

45,46

monopolar diffusion-encoding schemes and stronger

gradient rise times.

Image Postprocessing

While DKI is acquired using standard DWI sequences, cur-
rent clinical MR systems do not routinely provide in-line
DKI postprocessing options. Therefore, separate postprocess-
ing software is needed, which is becoming increasingly avail-
able. As a minimum, DXKI analysis should provide at least

two parametric maps corresponding to D,p, and K, while

app
by and user-defined computed b-value images can also be

generated. D, is analogous to the metric ADC that is

app
familiar to radiologists, being reduced in the setting of
impeded diffusion. While numerous factors influence these

metrics, D, is presumed to be the more accurate measure

app
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FIGURE 3: A 68-year-old man with Gleason 4+3 prostate cancer in right peripheral zone. A: Axial T,-weighted image shows
decreased T, signal in lesion (arrow). B: Diffusion-weighted image with ultrahigh b-value of 1500 s/mm? shows focal increased sig-
nal (arrow). C: D,, map and D: K,,, map obtained using non-Gaussian kurtosis model show visually decreased D, and increased
Kapp in lesion (arrow). E: Superimposed signal-intensity decay plots obtained using monoexponential fit for b-values up to 1000 s/
mm? (dashed red line) and kurtosis fit for b-values up to 2000 s/mm? (solid blue line) show improved fitting of the raw data using
kurtosis fit given its capturing of the curvature that occurs at b-values beyond 1000 s/mm?. Quantitative assessment reveals ele-
vated K, reflecting this curvature, as well as discrepancy between ADCq_1000 and D,pp.

of tissue diffusion, given its correction for non-Gaussian dif-
fusion behavior.
K.pp (unitless) equals 0 in the setting of completely

Gaussian diffusion.>* Biologic tissues tend to exhibit K
6
1.2

app
values between 0 and K,pp values greater than 1 indi-
cate increased contributions attributable to kurtosis behav-
ior.”?* Studies also suggest lowering of K in the setting of
posttreatment tumor necrosis.>>*’ Postprocessing  software
commonly applies a maximal possible upper limit for K,
above which the value is likely to represent an outlier due
to motion, noise, or other artifact.’® While Kpp theoreti-
cally may be negative, it will measure at least 0 in the set-
ting of water exchange between multiple compartments, as

26
726 and 0 can

is generally the case within biologic tissues,
therefore be used as a minimal value for K,,, in curve-
fitting procedures.

Reductions in D,

. . . . 10,33,34
always, associated with elevations in K. 3334 A a result,

are commonly, although not

the K,,, parametric map may visually appear analogous to
an inverted version of the D, parametric map, both indi-
cating abnormal diffusion behavior in similar anatomic loca-

tions. Therefore, a simple visual assessment of the two maps

may be diagnostically insufficient. Rather, quantitative anal-
app and Ko,
values is recommended in order to fully harness the comple-

ysis incorporating direct measurements of D

mentary role of kurtosis in distinguishing tissue pathology
(Figs. 3, 4). In some circumstances, such as viscous or tur-
bid fluid, reduced D
vated K,,,, (Fig. 5).

app May be encountered, without ele-

Pitfalls

First, it is suggested to avoid using a monoexponential fit for
DWIT acquisitions that include ultrahigh b-values over 1000 s/
mm”. For such acquisitions, the monoexponential model no
longer applies, and the obtained estimates of ADC will be less
meaningful and potentially incorrect. In this context, it may
be desired to both compute ADC maps with b-values less
than 1000 s/mm?, as well as have very high b-value signal
intensity images available for interpretation.*® In this circum-
stance, the acquired ultrahigh b-value images should be
excluded from the ADC map computation. Alternatively, two
separate diffusion acquisitions may be performed altogether,
one using b-values up to 1000 s/mm? and one using ultrahigh

Volume 00, No. 00



(b)

23 5
4

2.2 1

21 9

2

In ($/5,)

1.9 4

1.8 1

7

16

Rosenkrantz et al.: Body Diffusion Kurtosis Imaging

/

(c)

- == Mono-exponential fit
ADCg 1900 = 0.85*10* mm?/s

— Kurtosis fit
D, = 1.00%10*mm?/s
K,pp = 1.03

app

(d)

(e)

1000
b-value (s/mm?)

FIGURE 4: A 74-year-old man with high-grade urothelial carcinoma of the bladder. A: Axial T,-weighted image shows large right
posterolateral bladder mass (arrow) with gross extravesical extension. B: Diffusion-weighted image with ultra high b-value of
2000 s/mm? shows increased signal (arrow). C: D,,, map and D: K, map obtained using non-Gaussian kurtosis model show visu-
ally decreased D, and increased K, in lesion (arrow). E: Superimposed signal-intensity decay plots obtained using monoexpo-
nential fit for b-values up to 1000 s/mm? (dashed red line) and kurtosis fit for b-values up to 2000 s/mm? (solid blue line) show
improved fitting of the raw data using kurtosis fit given its capturing of the curvature that occurs at b-values beyond 1000 s/mm?.
Quantitative assessment reveals elevated K, reflecting this curvature, as well as discrepancy between ADCq_1000 and D,pp.

b-values, each optimized to achieve the maximal SNR possi-
ble for the b-value range used.

Likewise, the DKI model should not be applied when
<1000 d.33,36,44,49,50

Although software can mathematically fit the DKI equation

2 .
only b-values s/mm” are acquire

using any range of b-values and output D,,, and K, para-

app
metric maps, there is no logical basis for doing so. Given
the inclusion of an additional unknown variable in the DKI
model, such postprocessing will provide a mathematically
better goodness-of-fit to the raw data than a monoexponen-
tial model within the same b-value range.34 However, this
improved goodness-of-fit should not be viewed as evidence
of appropriateness, as the non-Gaussian diffusion behavior
that underlies the DKI fit has minimal effect for b-values
within this range. Since the curvature occurring at very high
b-values is not present within this range, values of D, will
tend to approach those of ADC.**** On this basis, radiol-
ogists should not characterize DKI fitting performed within
only a standard b-value range as either representing or sup-
porting the presence of non-Gaussian water behavior. Like-
wise, biomedical journals should require the appropriate use
of higher b-values in studies that aim to explore the clinical

Month 2015

utility of DKI. Finally, when comparing goodness-of-fit
between different diffusion models, it is important to apply
corrections to account for the different number of model
parameters.'”

Third, the DKI model fits the diffusion signal decay
well only when b-values do not exceed 2500-3000 s/mm?

depending on D,,, values. At higher b-values, the model,

which is mathem};};ical rather than physical, starts to fail,
predicting increasing signal intensity as the b-value increases
further, which is a physical non-sense. The b-value regime
that we suggest for body applications of DKI is consistent
with this upper limit.

Finally, as previously noted, radiologists need to ensure
sufficient SNR on the high b-value images. This require-
ment represents an important barrier to widespread clinical
application of DKI in body imaging at the present time.
DKI postprocessing can technically be applied to SNR-poor
image sets and yield D, and K, parametric maps from
which mean values can be extracted. However, if the SNR is
insufficient, then such data are prone to be heavily influ-
enced by the image noise and thus may be spurious in
nature. Therefore, the radiologist must always be aware of

7
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FIGURE 5: A 67-year-old woman with cystic adnexal lesion on ultrasound. MRl was performed for further evaluation. A: Axial T,-
weighted image shows a tubular area of T,-hyperintensity (solid arrow) representing a hydrosalpinx in middle of a peritoneal inclu-
sion cyst (PIC, dashed arrow) that entraps the left ovary (dotted arrow), which can be seen along the left lateral wall of the PIC. B:

Diffusion-weighted image with ultra high b-value of 2000 s/mm?

shows marked increased signal in the hydrosalpinx (arrow). C:

D.pp map and D: K, , map obtained using DKI modeling show visually markedly decreased D, and intermediate K, in the
tubular structure (arrow). E: Superimposed signal-intensity decay plots obtained using monoexponential fit for b-values up to
1100 s/mm? (dashed red line) and kurtosis fit for b-values up to 2000 s/mm? (solid blue line) show essentially identical fits without
curvature at b-values beyond 1100 s/mm?. The monoexponential decay of this tissue is consistent with its relatively acellular con-
tent. For this viscous fluid, quantitative DKI reveals markedly decreased D,p,, without significant elevation in Koo, as well as

essentially identical values for ADCq_1000 and D,pp.

SNR issues during data acquisition and postprocessing, and
implement adjustments appropriately. One method of
improving the accuracy of parameter estimates is to use
averaged signal intensity values over a user-defined ROI as
inputs to model fitting (as opposed to individual voxel fit-
ting), which also enables confidence intervals of parameters

estimates to be obtained, if required.

Clinical Review

In this section we summarize applications of DKI outside
the brain that have been reported within the peer-reviewed

literature (Table 3).

Prostate

A number of studies have evaluated the use of ultrahigh b-
value images in detection and characterization of prostate
cancer.'®'?°" Indeed, the use of ultrahigh b-values for
prostate cancer detection are incorporated into the PI-
RADS v. 2.0 guidelines,48 that state that ultrahigh b-value
images should be routinely acquired and inspected for focal

areas of hyperintensity, although such areas must also be sec-
ondarily evaluated on the ADC map (obtained with b-
values <1000 s/mm?), dynamic contrast-enhanced MRI,
and 75-weighted imaging. These recommendations are cor-
roborated in part from quantitative DKI studies conducted
in the prostate, with at least 13 studies as of this writing
measuring K., in benign or malignant prostate tis-
sue, ' 0-20:21:29,37,44,52-58 although not all used a b-value over
1000 s/mm?>*">? DKI has shown incremental improve-
ments compared with standard DWI for differentiating

375455 a5 well as low

benign and malignant prostate tissue,
and high grade tumors.'® However, not all studies have con-
firmed a significant diagnostic improvement in tumor grade
differentiation using DKI.*"7

A number of investigations report improved diagnostic
performance of DWI for prostate cancer detection when
using b-values greater than 1000 s/mm2. 1430 While this
improvement may relate to greater suppression of back-
ground benign tissue and thus higher lesion-to-background

contrast at higher b-values, this effect only partly accounts
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Year

2012
2012
2013
2014
2014
2014
2014
2014
2014
2015
2015
2015
2015
2010

2012

2014

2015

2014
2014
2014
2006
2013

2014
2015
2012

2014

2015
2015
2015
2014

2015
2014

Maximal
b-value®

800

2000
2000
2104
2300
1000
2000
1500
2000
2000
2000
3000
2000
1500

1448

1500

1500

2500
3000
2000
0.15

2000

600
1000
2000

3500

2000
2000
5600
10000

7163
800

Organ

Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate

Head and

neck

Head and

neck

Head and

neck

Head and

neck
Breast
Breast
Breast
Lung
Lung

Kidney
Kidney

Liver
Liver

Liver
Bladder
Calf muscle

Myocardium

Esophagus
Whole body

TABLE 3. Summary of Existing Literature of DKI Outside the Brain

Pathology

Cancer
Cancer
Cancer
Cancer
Cancer
Cancer
Cancer
Cancer
Cancer
Cancer
Cancer
Cancer

SCC

SCC nodal metastases
Nasopharyngeal carcinoma
Nasopharyngeal carcinoma

Cancer; other benign lesions
Cancer; other benign lesions
Cancer; other benign lesions
Small airway disease

Nonsmall-cell lung cancer

Hepatocellular carcinoma
Fibrosis

Hepatocellular carcinoma

Cancer

Cancer

Comment

Ex vivo

Used hyperpolarized *He

DPart of *F-FDG
PET/MRI

Ex vivo liver
explants

Ex vivo murine
specimens

Ex vivo rat specimens;
Q-space imaging

Ex vivo; Q-space imaging
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for the benefit observed. The probing of the interactions
between water and tissue elements that start to be seen only
at very high b-values probably also contributes to improved
lesion conspicuity. This distinction is important because b-
value images (of any magnitude) can alternatively be gener-
ated/synthesized/computed from images obtained at stand-
ard b-values.”’?* When such extrapolations are based on a
standard monoexponental fit of the SI decay plot, non-
Gaussian water behavior manifesting at ultrahigh b-values
cannot be truly ascertained.

Head and Neck
Three studies performed DKI using a b-value of ~1500 s/

mm? for head and neck cancers,'!”?¢°

showing improved
goodness-of-fit using DKI as well as generation of non-
redundant information. An additional study using a b-value
of 1500 s/mm?2 in patients undergoing neoadjuvant chemo-
therapy for nasopharyngeal carcinoma suggested DKI to be
superior to standard monoexponential DWI for predicting

1
early treatment I‘CSpOIlSC.6

Breast

Three studies have applied DKI using a maximal b-value of
20003000 s/mm? for assessment of breast diseases,!>%>%
demonstrating non-Gaussian diffusion behavior. Two of
app and

K,pp for differentiating benign and malignant breast tissue,

these studies reported strong performance of both D

although with conflicting results in terms of which of these
was the better-performing metric.'>* The remaining study
reported that fibroadenomas and fibrocystic change showed
alterations only in Kapp.62

Lung

One study performed DKI of the lungs using hyperpolar-
ized helium in a patient with small airway disease, showing
an alteration in kurtosis, although not in ADC.®* Another
study showed a significant correlation between K, and the
standardized uptake value of nonsmall-cell lung cancer

imaged by hybrid 18"°-FDG PET/MRL®

Kidney

Two studies have attempted DKI of normal renal tssue,
although using a maximal b-value of 600 or 1000 s/
mm?. %% Interestingly, one of these studies reported higher

K,pp in the renal medulla, whereas the other reported higher
K,pp in the cortex.?”>® Nonetheless, the maximal b-values

used in these studies are too low to support conclusions

regarding the feasibility or utility of DKI in the kidneys.

Liver

One study explored DKI using a maximal b-value of 2000 s/
mm?” in hypervascular hepatocellular carcinoma (HCC),
reporting higher performance of Ky, than ADC for assessing

posttreatment viability.”” In addition, in an ex vivo study of a

10

murine liver specimens with known fibrosis, DKI exhibited
better goodness-of-fit than a monoexponential model."? Also,
in an ex vivo study of HCC within human liver explants K,
was positively correlated with tumor cellularity and reduced

K,pp Was observed in necrotic treated lesions.>?

Other

Additional preliminary studies have demonstrated the feasi-
bility of DKI within bladder (showing higher area under the
curve of K, than ADC for differentiating low- and high-
grade cancer),”® human calf muscle in vivo,® rat myocar-
dium ex vivo,%” and human esophageal carcinoma ex vivo.8
Another study demonstrated the feasibility of performing
whole-body DKI processing in healthy human volunteers,
although using a maximal b-value of 800 s/mm?.>® At this

will tend to approach those of ADC,

b-value, values of Dapp
and radiologists should not characterize non-Gaussian fitting
performed within this standard b-value range as either repre-

senting or supporting DKI.

Future Directions

The potential of quantitative DKI, incorporating not just vis-
ual assessment of ultrahigh b-value images but also measuring
Kipp» remains to be fully explored. Therefore, for initial vali-
dation studies examining the role of ultrahigh b-value DWI,
radiologists are advised to include a quantitative DKI evalua-
tion if possible. In particular, we suggest that DKI be explored
during drug development to potentially establish K, and
Dapp
would be expected to lead to decreased cellular complexity

as pharmacodynamic biomarkers for treatments that

with treatment response, thereby leading to loss of kurtosis
and increased diffusivity.”® In this context, the potential of
K,pp to serve as an independent measure of response beyond
ADC can be explored.”*® Also, quantitative DKI could
become part of multiparametric imaging assessments, for
instance to support radiomics development, to improve bio-
logic understanding of tissue or tumor heterogeneity at multi-
ple scales, to integrate with other existing biomarkers, and to
support emerging clinical applications such as radiotherapy
planning on the basis of quantitative tissue characteristics.”’
Ultimately, to establish DKI metrics as potential biomarkers a
robust and rigorous biomarker development pathway is
required, including establishment of quality control, measure-
ment repeatability/reproducibility, understanding of sources
of measurement error, evaluation of test—retest and interplat-
form repeatability, comparison of DKI metrics with ADC in
multicenter studies, and validation of changes in DKI metrics
using histopathology, molecular pathology, and other labora-
tory biomarkers in preclinical and clinical settings.

In conclusion, in comparison to the role of standard
DWI and ADC in assessing extracellular water diffusion,
DKI probes non-Gaussian interactions of water molecules

within tissue environments and, through more advanced
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mathematical curve fitting, provides an additional parame-
ter, K,pp, that presumably reflects the heterogeneity and
irregularity of cellular microstructure, as well as the amount
of interfaces within cellular tissues. Nonetheless, careful
attention to detail with which body radiologists may not be
currently familiar is important to ensure reliable results.
While DKI is acquired using a standard DWI sequence,
although incorporating ultrahigh b-values in order to detect
the non-Gaussian behavior, additional dedicated postpro-
cessing software is required for analysis and generation of
DKI parametric maps. In this article we have suggested a
maximal b-value of 1500-2000 s/mm? for DKI applications
in the body, lower than typically used in the brain. In recent
years, a small number of studies have explored the role of
DKI outside the brain. The most investigated organ is the
prostate gland, with preliminary studies suggesting poten-
tially improved tumor detection and grading using DKI.
Currently, DKI is still largely a research tool, and few
compelling data support its routine use over conventional
DWI measurements in oncologic assessments. Nonetheless,
the technique is at a stage in which it can be explored in
wider clinical settings. A robust understanding of DKI is
important for radiologists to better understand what K
and D,
these metrics vary between tumor types and in response to

app
mean in the context of different tumors and how

treatment. We therefore encourage body radiologists to
employ DKI using the suggestions presented in this review,
especially in the framework of future investigations of ultra-
high b-value imaging. Such efforts will enhance our knowl-
edge of DKI findings and help better define the benefits

and drawbacks of this novel technique.
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