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Big data initiatives such as the Enhancing NeuroImaging Genetics through Meta-
Analysis consortium (ENIGMA), combine data collected by independent studies 
worldwide to achieve more generalizable estimates of effect sizes and more reliable and 
reproducible outcomes. Such efforts require harmonized image analyses protocols to 
extract phenotypes consistently. This harmonization is particularly challenging for resting 
state fMRI due to the wide variability of acquisition protocols and scanner platforms; this 
leads to site-to-site variance in quality, resolution and temporal signal-to-noise ratio 
(tSNR). An effective harmonization should provide optimal measures for data of different 
qualities. We developed a multi-site rsfMRI analysis pipeline to allow research groups 
around the world to process rsfMRI scans in a harmonized way, to extract consistent and 
quantitative measurements of connectivity and to perform coordinated statistical tests. 
We used the single-modality ENIGMA rsfMRI preprocessing pipeline based on model-
free Marchenko-Pastur PCA based denoising to verify and replicate resting state network 
heritability estimates. We analyzed two independent cohorts, GOBS (Genetics of Brain 
Structure) and HCP (the Human Connectome Project), which collected data using 
conventional and connectomics oriented fMRI protocols, respectively. We used seed-
based connectivity and dual-regression approaches to show that the rsfMRI signal is 
consistently heritable across twenty major functional network measures. Heritability 
values of 20-40% were observed across both cohorts. 
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1. Introduction 

Resting state functional MRI (rsfMRI) studies investigate large-amplitude, spontaneous low-
frequency fluctuations in the fMRI signal that are temporally correlated across functionally 



	

related brain areas [1-4]. It is the basis for a powerful method to evaluate temporal correlations 
of low-frequency blood oxygenation level-dependent fluctuations across brain regions in the 
absence of a task or stimulus [2, 4]. Genetic analyses on rsfMRI phenotypes are challenged by 
limited statistical power.  One way to address this is by pooling data from multiple cohorts or 
studies. The Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium 
has developed an rsfMRI analysis pipeline to perform consistent analysis and extraction of 
resting state connectivity measures across data collected using diverse protocols [7]. Here, we 
demonstrate the utility of this pipeline by replicating findings of significant heritability in the 
default mode network in (A) the original Genetics of Brain Structure (GOBS) cohort [10], and 
(B) data from the Human Connectome Project (HCP; [11]); we also aim to demonstrate 
consistent additive genetic contribution to intersubject variance in other intrinsic brain networks. 
The motivation for this work is that, ultimately, it should be possible to discover genetic variants 
that reliably affect brain function, but a key milestone in this quest is to establish that the metrics 
targeted are heritable, i.e., individual genetic variance accounts for a significant proportion of 
their variation across subjects. This paper is one key step in this process.  

The ENIGMA rsfMRI pipeline differs from existing pipelines in two notable respects. Many 
fMRI analysis pipelines require input from multiple imaging modalities. Commonly, a structural 
T1-weighted (T1w) MRI scan is required to regress out signal trends from cerebrospinal fluid 
(CSF) and cerebral white matter, and T1w data is used for anatomical registration to an atlas 
space [5, 6]. In the spirit of other ENIGMA pipelines, our pipeline for rsfMRI is a single-
modality pipeline. It uses a deformable template created from 1,100 individual images provided 
by ENIGMA sites to incorporate shape distortions common to fMRI images [7]. The pipeline 
uses direct tissue classification of rsfMRI data to regress out some of the variance due to 
methodical (non-biological) factors. Both approaches avoid the potential pitfalls of site-to-site 
variance in T1w data and coregistration biases that may influence the rsfMRI phenotypes.  

In another notable difference, we use a novel denoising technique based on the Marchenko-
Pastur distribution [8] - fitted to the eigenvalues of a principal component analysis (MP-PCA) 
across space and time - to identify and remove the principal components originating due to 
thermal noise. We used this MP-PCA-based denoising technique to reduce signal fluctuations 
rooted in thermal noise and hence increase the tSNR without altering the spatial resolution. The 
ability to suppress thermal noise is based on data redundancy in the PCA domain, using universal 
properties of the eigenspectrum of random covariance matrices [8]. The bulk of the PCA 
eigenvalues arise due to noise and can be asymptotically represented by the universal MP 
distribution, in the limit of the large signal matrix size (voxels × time points). The Marchenko-
Pastur parameterization allows us to identify noise-only components and to estimate the noise 
level in a local neighborhood based on the singular value decomposition of a signal matrix 
combining neighborhood voxels [9]. After removing noise-only components, the resulting 
images show enhanced SNR; the residual noise is contained in the remaining components, which 
cannot be further denoised by this method.  



	

Here, we validate the ENIGMA-rsfMRI analysis pipeline by attempting to verify and 
replicate the assertion that there is moderately strong genetic influence on the resting state signal 
[10], and that significant heritability estimates are consistently found across independent cohorts. 
While the actual value of the heritability estimate may depend on cohort parameters such as their 
demographics, age, and environment – and presumably also on the image SNR – a key goal of a 
collaborative imaging genetics initiative is to identify brain metrics that are significantly 
heritable across cohorts, as a precursor to a more in-depth search for common variants associated 
with the trait, in this case brain function. Glahn and colleagues showed that individual variance 
in measures of connectivity within intrinsic brain networks - such as the default-mode network - 
is influenced by genetic factors:  for some metrics, ~40% of the variance could be attributed to 
additive genetic factors [10]. The ENIGMA-rsfMRI pipeline was used to measure individual 
variations in the default mode network and perform heritability analysis in the same dataset used 
by Glahn and colleagues (N=334), using two complementary measurements of connectivity: 
region-based (also called “seed”-based) analysis and dual regression. We further expanded this 
analysis by demonstrating that similar heritability estimates can be obtained for other intrinsic 
brain networks and replicated the detection of significant heritability estimates in the data from a 
young adult sample collected by HCP (N=518). The detection and estimation of additive genetic 
effects may depend on the degree of relatedness across individuals underlying the sample 
structure. We tested heritability measurements computed from two commonly used familial 
study designs: GOBS subjects were recruited from an extended pedigree and HCP subjects were 
recruited from a twin/siblings registry. Similarity in the heritability measurements across two 
diverse cohorts would therefore be further evidence to support the suitability of the ENIGMA 
rsfMRI protocol and connectivity measurements for large-scale genetic analyses of cerebral 
functional connectivity.  

2.  Methods and Materials 

2.1. Study subjects and imaging protocols:  

Two rsfMRI datasets were analyzed (GOBS and HCP: acronyms are detailed below). 

2.1.1. GOBS - Genetics of Brain Structure and Function study 

Subjects: This sample comprised 334 (124 M/210 F, mean age: 47.9±13.2 years) Mexican-
American individuals from 29 extended pedigrees (average family size = 9 people; range 5-32) 
who participated in the Genetics of Brain Structure and Function study. Individuals in this cohort 
have actively participated in genetics research for over 20 years and, were randomly selected 
from the community with the constraints that they are of Mexican-American ancestry, part of a 
large family, and live within the San Antonio, TX region. In this study, individuals were 
excluded for MRI contraindications, history of neurological illnesses, or stroke or other major 
neurological event. All participants provided written informed consent on forms approved by the 
institutional review board at the University of Texas Health Science Center San Antonio 



	

(UTHSCSA). 

Imaging: All imaging was performed at the Research Imaging Institute, UTHSCSA, on a 
Siemens 3 T Trio scanner using a multichannel phased array head coil. Whole-brain, resting-
state functional imaging was performed using a gradient-echo echo planer imaging (EPI) 
sequence sensitive to the BOLD effect with the following parameters: TR=3000 ms, TE=30 ms, 
spatial resolution=1.72×1.72×3 mm3, flip angle=90 degrees. The resting-state protocol included 
43 slices acquired parallel to the sagittal plane containing the anterior and posterior 
commissures; scan time was 7.5 min.  

2.1.2. HCP – Human Connectome Project 

Subjects: We included rsfMRI data, 518 participants (240 M/278 F; mean age 
28.7 ± 3.7 years) from the Human Connectome Project (HCP) dataset, released in March 2017. 
Participants were recruited from the Missouri Family and Twin Registry [11]. All HCP 
participants were from young adult sibships of average size 3–4 that include a monozygotic or 
dizygotic twin pair and (where available) their non-twin siblings. Subjects ranged in age from 22 
to 37 years. This age range was chosen as it corresponds to a period after neurodevelopment is 
largely completed and before the typical age of onset of neurodegenerative changes. The 
inclusion and exclusion criteria are detailed elsewhere [11]. The HCP subjects are healthy young 
adults within a restricted age range and free from major psychiatric or neurological illnesses [12, 
13]. All subjects provided written informed consent on forms approved by the Institutional 
Review Board of Washington University in St Louis. 

Imaging: All HCP subjects are scanned on a customized Siemens 3 T “Connectome Skyra” 
scanner housed at Washington University in St. Louis, using a standard 32-channel Siemens 
receive head coil. RsfMRI data consisted of two runs in one session. Within a session, oblique 
axial acquisitions alternated between phase encoding in a right-to-left direction in one run and 
phase encoding in a left-to-right direction in the other run. Resting state images were collected 
using a gradient-echo echo planar imaging (EPI) sequence with the following parameters: 
TR=720 ms, TE=33.1 ms, flip angle=52 degrees, FOV=208×180 mm (RO×PE), matrix=104×90 
(RO×PE), 2.0 mm isotropic voxels, 72 axial slices, multiband factor=8; scan time was 28.8 min.  

2.2. Functional Image Analysis 

The rsfMRI data processing was carried out using the ENIGMA resting state analysis 
pipeline implemented in the Analysis of Functional NeuroImages (AFNI) software [14]. 
ENIGMA developed a single-modality resting state analysis pipeline [7]. The ENIGMA pipeline 
is an extension of the conventional AFNI rsfMRI pipeline [14] (Figure 1). The first step is the 
application of principal components analysis (PCA)-based denoising [8, 9], to improve signal-to 
noise ratio (SNR) and temporal SNR (tSNR) properties of the time series data, with no loss of 
spatial resolution of the image and without the introduction of additional partial volume effects 



	

[7]. This denoising approach is free from the limitations of the loss of spatial resolution of the 
image and introduction of additional 
partial volume effects that lead to 
complications in further quantitative 
analyses [8]. The MP-PCA approach 
does not alter the resting state 
network activation patterns, whereas 
spatial smoothing using a Gaussian 
kernel leads to partial voxel 
averaging, spreading the activations 
across gray and white matter regions 
and removing smaller nodes. 
Finally, the noise-maps produced by 
MP-PCA approach provide valuable 
information for quality control as 
deviations from the expected 
uniform or slowly varying in space 
pattern of thermal noise may 
indicate problems with the coil or 
other scanner hardware.  

In the next step, supplementary 
data, if provided, is used for correction of 
spatial distortions associated with long-TE 
gradient echo imaging. Two available 
corrections are the gradient-echo 
‘fieldmap’ or the reversed-gradient 
approach. In the next step, a transformation 
is computed registering the base volume to 
the ENIGMA EPI template (Figure 2) that 
was derived from 1,100 datasets corrected 
across 22 sites [7] to develop a spatial 
template and spatial atlas. This atlas has a 
dual purpose: it is used for regression of 
the global signal, and also offers a 
common anatomical spatial reference 
frame. Next, correction for head motion is 
performed by registering each functional 
volume to the volume with the minimum 
outlier fraction (suggesting it has little 
motion), where each transformation is 

Fig. 1. Flowchart of ENIGMA rsfMRI analysis pipeline. 

Fig. 2. ENIGMA EPI brain template (a) and 
segmented tissue classes (b-d) for gray matter, white 
matter and cerebrospinal fluid, respectively. 



	

concatenated with the transformation to standard space, to avoid unnecessary interpolation. 
Nuisance variables such as the linear trend, 6 motion parameters (3 rotational and 3 translational 
directions), their 6 temporal derivatives (rate of change in rotational and translational motion) 
and time courses from the local white matter and cerebrospinal fluid (CSF) from lateral 
ventricles were modeled using multiple linear regression analysis, which were then removed as 
regressors of no interest. Time points with excessive motion (> 0.2 mm), estimated as the 
magnitude of displacement from one time point to the next, including neighboring time points 
and outlier voxels fraction (>0.1) were censored from statistical analysis. Images were spatially 
normalized to the ENIGMA EPI template in Montreal Neurological Institute (MNI) standard 

space for group analysis.  

2.3. Functional connectivity 
analysis 

Resting state network 
templates were defined based 
on the probabilistic regions of 
interest (ROIs) from 20-
component analysis of the 
BrainMap activation database 
and resting fMRI dataset [4]. 
We defined the binary masks 
of the resting state template 
regions from auditory network 
(AN), default mode network 
(DMN), fronto-parietal 
network (FPN), sensorimotor 
network (SMN), visual 
network (VN), executive 
control network (ECN), 
salience network (SN), and 
attention network (AttN) 
(Figure 3). Mean time series 
were extracted from the seed 
regions of each network and 
connectivity maps 
corresponding to each seed 
region were obtained by 
assessing correlations along 
the time series for different 
regions. Next, Fisher’s r-to-z 
transformations were applied 

Fig.3. Resting state network template ROIs based on the BrainMap 
activation database and resting fMRI dataset [4]. Here, L=left, R=right, 
in (a) a1=left primary and association auditory cortices, a2=right 
primary and associated auditory cortices, in (b) r1=posterior 
cingulate/precuneus, r2=bilateral temporal-parietal regions and, 
r3=ventromedial frontal cortex, in (c) f1/f2=left/right frontal area and 
p1/p2=left/right parietal area, in (d) m1/m3=left/right motor area and 
m2=supplementary motor area, in (e) v1=medial visual areas, v2= 
occipital visual areas, and v3=lateral visual areas, in (f) r1=anterior 
cingulate cortex and r2=bilateral medial frontal gyrus, in (g) r1=anterior 
cingulate cortex and r2/r3=left/right insula, in (h) f1/f2=left/right middle 
frontal gyrus and p1/p2=left/right superior parietal lobule. 



	

to obtain a normal distribution. We calculated seed-based functional connectivity values between 
seed regions in each network and performed heritability calculation. For the HCP dataset, 
heritability measures were calculated for all subjects (N=518) under consideration and, in a 
separate analysis, for subjects (N=481) with censored TRs less than 15% of the total TRs during 
the processing. Furthermore, we performed dual regression analysis for the default mode 
network template ROIs, and calculated the functional connectivity measures and hence 
heritability estimates on the GOBS dataset (N=334). (This same dataset was used in a prior study 
by David Glahn and colleagues [10]). In the case of dual regression, for the given network 
template ROIs, average single time series were computed from the preprocessed data for each 
subject, and hence we obtained the average time series from all subjects, and then averaged these 
to obtain an average time series that represents the group average time trend. The group average 
time trend was regressed out from each subject’s data, before calculating the functional 
connectivity values. 

2.4. Heritability estimation 

For the heritability estimations, the variance components method was used, as implemented 
in the Sequential Oligogenic Linkage Analysis Routines (SOLAR) Eclipse software package 
(http://www.nitrc.org/projects/se_linux) [15]. SOLAR uses maximum likelihood variance 
decomposition methods, extensions of the strategy developed by Amos and colleagues [16]. The 
covariance matrix Ω for a pedigree is given by: Ω = 2Φ𝜎!! + 𝐼𝜎!!, where 𝜎!! is the genetic 
variance due to the additive genetic factors, 𝜙 is the kinship matrix representing the pair-wise 
kinship coefficients among all individuals, 𝜎!! is the variance due to individual — unique 
environmental effects and measurement error, and I is an identity matrix (under the assumption 
that all environmental effects are uncorrelated among family members). Narrow sense 
heritability is defined as the fraction of phenotypic variance 𝜎!! attributable to additive genetic 
factors,  

                                                      ℎ! =  !!
!

!!!
                                                                        (1) 

The variance parameters are estimated by comparing the observed phenotypic covariance matrix 
with the covariance matrix predicted by kinship [15]. Significance of the heritability estimate is 
tested by comparing the likelihood of the model in which 𝜎!!  is constrained to zero with that of a 
model in which 𝜎!! is estimated. Twice the difference between the log-likelihoods of these 
models yields a test statistic, which is asymptotically distributed as a 1/2:1/2 mixture of 𝜒! 
variables with 1 degree-of-freedom and a point mass at zero. Prior to the heritability estimation, 
phenotype values from each dataset were adjusted for covariates including sex, age, age2, 
age×sex interaction, and age2

×sex interaction. Inverse Gaussian transformation was also applied 
to ensure normality of the distribution. Outputs from SOLAR include the heritability estimate 
(h2), the significance value (p), and the standard error for each trait (SE). 

3.  Results  



	

3.1. Seed-based analysis. Heritability estimates for connectivity measurements extracted from 
the seed-based approach are summarized in Table 1. The default mode network (DMN) showed 
significant heritability for the connectivity from the posterior cingulate/precuneus to bilateral 
temporal-parietal regions (h2=0.34±0.16, p=0.014) and ventromedial frontal cortex 
(h2=0.35±0.17, p=0.014) respectively for the GOBS dataset. Replication analyses, in the HCP 
dataset, demonstrated significant heritability in the functional connectivity measures from all 
node pairs of the DMN. In the fronto-parietal network, we found significantly heritable 
functional connectivity in both datasets. Heritability estimates in other networks showed a 
similar pattern of genetic control in both GOBS and HCP with greater evidence for statistical 
significance (i.e., lower p-values) observed in HCP subjects.  Heritability estimates were found 
to be improved by excluding subjects who had more than 15% of total TRs censored due to 
motion from the HCP dataset (HCP, N=481). 

3.2. Dual regression analysis. To confirm the heritability estimates from seed based 
connectivity, a dual regression analysis was also conducted in GOBS. Here, connectivity values 
for the DMN ROIs were again significantly heritable from posterior cingulate/precuneus to 
bilateral temporal-parietal regions (h2=0.31±0.17, p=0.027) and ventromedial frontal cortex 
(h2=0.25±0.17, p=0.038) (Table 2). The connection from bilateral temporal-parietal regions to 
posterior cingulate/precuneus was likewise significantly heritable (h2=0.26±0.16, p=0.035).  

Table 1.  Heritability estimates for measures derived from resting state networks (RSNs). *Regions are 
based off of Figure 3. Bolded connections are significant at 5% FDR. #Estimated heritability, h2 (SE). 
Abbreviations: GOBS= Genetic of Brain Structure and Function study, HCP=Human Connectome 
Project, DMN=default mode network, FPN=fronto-parietal network, SMN=sensorimotor network, 
VN=visual network, SN=salience network, AttN=attention network, ECN=executive control network, 
AN=auditory network. 

Network  GOBS (N=334) HCP (N= 518) HCP (N=481) 
 
 
 
DMN 

Regions* Heritability# p-value Heritability# p-value Heritability# p-value 
r1-r2 0.34 (0.16) 0.014 0.27 (0.09) 1.0×10-7 0.28 (0.09) 1.0×10-7 
r2-r3 0 0.500 0.14 (0.09) 0.008 0.13 (0.09) 0.014 
r3-r1 0.09 (0.15) 0.276 0.15 (0.11) 0.025 0.12 (0.11) 0.059 
r2-r1 0.09 (0.13) 0.244 0.27 (0.09) 4.6×10-8 0.25 (0.09) 2.0×10-7 
r3-r2 0 0.500 0.23 (0.12) 0.002 0.21 (0.12) 5.7×10-3 
r1-r3 0.35 (0.17) 0.014 0.09 (0.1) 0.120 0.08 (0.09) 0.094 

 
FPN 

f1-p1 0.14 (0.14) 0.149 0.16 (0.11) 0.019 0.16 (0.10) 0.018 
p1-f1 0.13 (0.14) 0.169 0.16 (0.11) 0.018 0.13 (0.11) 0.044 
f2-p2 0.31 (0.15) 0.016 0.19 (0.14) 0.034 0.26 (0.14) 0.021 
p2-f2 0.29 (0.15) 0.025 0.27 (0.14) 0.042 0.36 (0.13) 0.009 

 
 
SMN 

m1-m2 0.09 (0.14) 0.255 0.29 (0.15) 0.017 0.35 (0.14) 0.006 
m2-m3 0 0.500 0.14 (0.12) 0.113 0.14 (0.13) 0.135 
m3-m1 0.32 (0.20) 0.041 0.27 (0.14) 0.009 0.32 (0.14) 0.007 
m2-m1 0.06 (0.12) 0.302 0 0.500 0 0.500 
m3-m2 0 0.500 0.15 (0.13) 0.108 0.24 (0.14) 0.044 
m1-m3 0.32 (0.20) 0.045 0.25 (0.13) 0.008 0.32 (0.14) 0.005 



	

 
 
VN 

v1-v2 0.210 (0.15) 0.062 0.14 (0.09) 0.021 0.15 (0.09) 0.019 
v2-v3 0.36 (0.14) 0.004 0.17 (0.11) 0.029 0.20 (0.11) 0.017 
v3-v1 0.12 (0.14) 0.168 0.03 (0.04) 0.191 0.05 (0.06) 0.145 
v2-v1 0.32 (0.15) 0.009 0.13 (0.09) 0.042 0.18 (0.11) 0.017 
v3-v2 0.13 (0.14) 0.161 0.15 (0.09) 0.040 0.19 (0.11) 0.017 
v1-v3 0.17 (0.14) 0.100 0.06 (0.05) 0.060 0.09 (0.06) 0.030 

 
 
 
SN 

r1-r2 0.20 (0.13) 0.062 0.07 (0.09) 0.121 0.06 (0.08) 0.166 
r2-r3 0.24 (0.12) 0.019 0.25 (0.11) 0.002 0.28 (0.13) 0.002 
r3-r1 0 0.500 0.13 (0.08) 0.005 0.12 (0.08) 0.013 
r2-r1 0.16 (0.12) 0.084 0.20 (0.11) 0.002 0.17 (0.11) 0.008 
r3-r2 0.18 (0.12) 0.049 0.31 (0.12) 3.8×10-4 0.32 (0.12) 4.0×10-4 
r1-r3 0 0.500 0.05 (0.06) 0.142 0.04 (0.06) 0.196 

 
AttN 

f1-p1 0.20 (0.12) 0.031 0.10 (0.15) 0.288 0.08 (0.19) 0.384 
p1-f1 0.21 (0.12) 0.024 0.08 (0.11) 0.213 0.05 (0.10) 0.274 
f2-p2 0.32 (0.12) 0.001 0.27 (0.14) 0.018 0.32 (0.14) 0.011 
p2-f2 0.31 (0.12) 0.002 0.32 (0.14) 0.005 0.35 (0.14) 0.004 

ECN r1-r2 0.17 (0.14) 0.088 0.17 (0.11) 0.023 0.18 (0.12) 0.015 
r2-r1 0.23 (0.14) 0.034 0.23 (0.11) 0.003 0.22 (0.11) 0.002 

AN a1-a2 0.12 (0.16) 0.209 0.05 (0.09) 0.275 0.03 (0.07) 0.336 
a2-a1 0.05 (0.14) 0.356 0.05 (0.08) 0.260 0.04 (0.08) 0.303 

 
 

Table 2. Heritability estimates for measures derived from DMN (GOBS). * Regions are based off of 
Figure 3. Bolded connections are significant after multiple comparisons correction with FDR at q=5%. 
#Estimated heritability, h2 (SE). 
 

Network  Seed-based approach Dual regression 
approach 

 
 
 

DMN 

Regions* Heritability# p-value Heritability# p-value 
r1-r2 0.34 (0.16) 0.014 0.30 (0.17) 0.027 
r2-r3 0 0.500 0 0.500 
r3-r1 0.09 (0.15) 0.276 0.09 (0.11) 0.279 
r2-r1 0.09 (0.13) 0.244 0.26 (0.16) 0.035 
r3-r2 0 0.500 0 0.500 
r1-r3 0.35 (0.17) 0.014 0.25 (0.17) 0.038 

 

3.3. Execution time. All analyses were carried out at the Center for High-Performance 
Computing at Washington University. The processing time of ENIGMA rsfMRI pipeline varied 
with complexity of the dataset. Dual regression analysis of GOBS resting data consisting of 
N=150 fMRI volume took about 30 min per subject/network on a modern linux server node.  
Analysis of HCP data of N=2400 fMRI volumes took about 6 hours per subject/network.  
 

4. Discussion 



	

We applied the ENIGMA rsfMRI pipeline to two datasets (GOBS and HCP), collected ten 
years apart, to demonstrate that we could consistently detect genetic influences on resting state 
connectivity. Building on prior work in individual cohorts, this experiment provides direct 
evidence that connectivity within the DMN and other intrinsic brain networks is influenced by 
genetic factors. We found between 20-40% of the intersubject variance in functional connectivity 
within functional networks was under genetic control. Our findings replicate previously reported 
heritability measurements in the GOBS cohort and extend this research by conducting 
harmonized analyses in the HCP subjects. The pattern of heritability was similar between two 
cohorts collected using very different imaging protocols and sample designs. Together, these 
findings strongly suggest that resting state connectivity is under a moderate genetic control and 
this heritability can be detected in, in terms of image acquisition, both legacy and state-of-the art 
samples. Establishing the consistency of the heritability of resting state functional connectivity 
provides critical information necessary before these measures can be appropriately used in 
genetic studies designed to identify or functionally characterize genes influencing measures of 
brain function. Showing reproducible and significant heritability is necessary before indices of 
default-mode functional connectivity can be considered as an intermediate phenotype or 
endophenotype for in-depth genetic analyses.  

Prior works on rsfMRI analysis are generally multimodal and rely on spatial co-alignment of 
subject’s structural (T1w) and rsfMRI data for regressions of global connectivity signals and 
ROI analyses in a common anatomical frame. The site-to-site variability in the quality of the 
T1w data and the variance in registration quality between T1w and rsfMRI images may influence 
the results of the overall rsfMRI analysis. To minimize these potential pitfalls, we have used the 
ENIGMA rsfMRI analysis pipeline - a unimodal analysis workflow that uses a deformable 
ENIGMA EPI template to serve the dual purpose of regression of the global signal and offering a 
common anatomical spatial reference frame. The use of this deformable template greatly 
improves registration for individual EPI images, including ventricular overlap, when compared 
to the standard ICBM-152 template [7]. This analysis pipeline also incorporates the MPPCA 
denoising algorithm, which helps to improve SNR/tSNR properties of the time series data [8,9], 
with no loss of spatial resolution of the image and without the introduction of additional partial 
volume effects [7]. In addition, it includes the two complementary measurements of 
connectivity: region-based analysis and dual regression, to test heritability estimations on 
functional connectivity measurements. 

The ENIGMA rsfMRI pipeline is built using the NIH-supported software - AFNI - that is 
freely available to both non-commercial and commercial users. The use of free-license software 
opens ENIGMA collaboration to commercial entities such as pharmacological companies. It is a 
unimodal analysis workflow designed for consistent retrospective analyses of state-of-the-art and 
legacy data. The pipeline incorporates stringent quality assurance (QA) and quality control steps. 
It incorporates traditional QA measurements to detect and censor motion and other types artifacts 
that are detectable visually. It also uses novel analysis of the heterogeneity of the thermal noise 
within imaging volume to enable identification of more subtle artifacts such as time-and-space 



	

related variability in the coil sensitivity profiles. The efforts to compare the performance of 
ENIGMA rsfMRI analysis pipeline across multiple cohorts with other rsfMRI analysis pipelines 
are ongoing. 
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