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Overview: 
The main function of this Matlab toolbox is to run a GLM on graph theoretic network 
properties computed from brain networks. The GLM accepts continuous & categorical 
between-participant predictors and a categorical within-participant predictor. 
Significance is determined via non-parametric permutation tests. The toolbox allows 
testing of both fully connected and thresholded (binarized or not binarized) networks 
(based on a range of thresholds). Currently, the toolbox works only with undirected 
matrices (directed matrices and tests of direction/causality will be added in the future).  
The toolbox also provides a data (pre)processing path for resting state and (block 
design) task fMRI data. Several options for partialing nuisance signals are included 
(particularly relevant for resting analyses), including partialing total or local (Jo et al., 
2013) white matter signal, partialing the first 5 principal components of white 
matter/ventricular signal (instead of the means; Muschelli et al., 2014), calculation of 
Saad et al. (2013)'s GCOR, and the use of Chen et al. (2012)’s GNI method to determine 
whether global signal partialing is needed. In addition, Power et al. (2014)'s motion 
scrubbing method and Patel et al. (2014)'s WaveletDespike procedure are available.  
For task fMRI, the toolbox will compute connectivity matrices for each user-specified 
condition after dividing up the timeseries by condition. In order to compensate for 
HDR-related delay, the timeseries’ are first deconvolved (using SPM's method), allowing 
them to be divided at the actual onset/offset times. Therefore, this method will likely not 
work for fast event-related designs and may or may not work for slow event-related 
designs. Even with a block design, extra caution should be used with this method, 
because we have explored the method only minimally. In-house testing shows that this 
method produces similar findings to simply assuming a 2-second delay and dividing the 
timeseries without deconvolution, indicating that the deconvolution process is not 
introducing any major distortion.  
To reference this tool, please cite the conference abstract: 
Spielberg, J.M. (2014). Graph theoretic general linear model (GTG): a MATLAB toolbox. 
Brain Connectivity. 



Installation: 
After unzipping the zip file in an appropriate directory, set the Matlab path to include 
the folder and all subfolders. If you would like to use wavelet despiking, you must 
download the toolbox (www.brainwavelet.org). Be sure to download the version of the 
toolbox appropriate for you OS and follow their setup instructions (run the setup.m file). 
If you would like to use least trimmed squares regression, you must download the 
LIBRA toolbox (http://wis.kuleuven.be/stat/robust/LIBRA). Be sure to download both 
the main library and, if need be, the OS appropriate supplement.  
 
 
 
Dependencies/Requirements: 
All dependencies are contained within the ‘dependencies’ subfolder, with the exception 
of BrainWavelet, FSL (both needed for Stage 1 [preprocessing]), and LIBRA (needed for 
Stage 4). Because FSL can only be used on Linux/Mac (or an emulator), Stage 1 
processing must be done on one of those platforms (whereas, the other stages may be 
done on any platform).  
The toolbox will detect whether you have the Parallel Computing Toolbox (PCT), and 
ask whether to use it, if so.  
The toolbox can be fairly RAM intensive for large numbers of nodes (>150), particularly 
when using PCT. A minimum of 2GB of RAM is necessary. Given that these analyses are 
highly parallel, using PCT on a multi-core machine is highly desirable.  
 
 
 
Usage 
The main GUI can be accessed by typing METAlab_GTG. The 
toolbox has four stages, described in more detail below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Stage 1 – Preprocessing of Resting State fMRI Data: 
This GUI accepts raw fMRI 4D timeseries data along with several other inputs, performs 
preprocessing, and creates a processed timeseries for each input ROI. All image inputs 
should be in .nii or .nii.gz format and LAS orientation.  

 
Inputs: 
Cell array containing participant identifiers: 

-This should be a variable in the matlab workspace; enter the name of the 
variable in this field. 
-Needed to specify the files for each participant and must match the filenames 
(e.g., for a filename of EPI_001.nii.gz, the ID must be ‘001’ not ‘1’). 

Cell array containing a label for each ROI in the input mask: 
-This should be a variable in the matlab workspace; enter the name of the 
variable in this field. 
-This array should contain two columns. The first column should contain the ROI 
names and the second should contain the corresponding numeric identifiers (i.e., 
the numbers that identify each ROI in the 3D ROI image).  

Number of timepoints in timeseries (currently, must be consistent across participants) 
Repetition time (TR) of fMRI data 
4D fMRI timeseries file for each participant: 

-NOTE: for each input image file, only the filename of the first participant (in the 
cell array) is input. The program locates the rest of the files by replacing the 
participant ID. Therefore, filenames must be consistent.  

3D binary brain mask for the functional data: 
-If the 4D fMRI timeseries is not yet motion corrected, the binary brain mask 
should correspond to the middle volume in the timeseries.  
-The purpose of this mask is 2-fold: 

Constrain which voxels are examined. 



Compute the global signal.  
3D ROI file containing all desired nodes: 

-Each ROI must have a unique numeric identifier (identifiers need not be 
consecutive).  

3D binary white matter mask: 
-Optional, only needed if the user wishes to partial white matter signal. 

3D binary ventricle mask: 
-Optional, only needed if the user wishes to partial ventricular signal. 

-NOTE: if the ROI, white matter, and ventricular masks have not yet been transformed 
into functional space, the user must note the input space and provide the correct 
transform file (to warp to functional space). For standard space to functional, the 
transform must be a warp file suitable for use with FSL’s FNIRT. For structural space to 
functional, the transform must be a matrix file suitable for use with FSL’s FLIRT.  
 
 
 
Options (in order of implementation): 
-Slice timing correction  
-Motion Correction 
-Polynomial detrending 
-Wavelet despiking (using Patel et al. (2014)'s Brain Wavelet Toolbox).  

NOTE: despiking is performed with the default parameters. Also, this procedure 
is likely incompatible with Power et al. (2014)'s motion scrubbing, so only one of 
these procedures can be used at a time.  

-Bandpass filtering 
Three filter options: 

‘Ideal’ filter: This filter is based on that used in REST v. 1.8. This filter 
achieves complete precision (of cutoff frequency) in the frequency domain 
at the expense of inducing oscillation in the time domain. 
Butterworth filter: This filter induces less oscillation in the time domain 
than the ‘ideal’ filter at the expense of a shallower frequency cutoff. 
FSL’s nonlinear highpass & Gaussian linear lowpass filter: The non-
linearity of the highpass filter may be useful, because non-Gaussianity in 
lower frequencies may be useful in determining causal direction (Mumford 
& Ramsey, 2014).  

-Erode white matter/ventricle masks: 
You can erode the white matter/ventricle masks using a sphere (in order to 
reduce the amount of gray matter signal they will capture). If you choose to erode 
the masks, you must provide a radius for the sphere in fMRI voxels.  

 
-Partialing of nuisance signals: 



Motion correction parameters: 
-Original 6 parameters. 
-t - 1 parameters (a la Friston’s autoregressive method). 
-Squared parameters. 
-(2nd order) 1st derivative of parameters. 

Global signal: 
-(2nd order) 1st derivative of signal. 
-Given the controversy surrounding partialing of global signal, two further 
options are available:  

GNI: 
The user can test the necessity of partialing global signal on a 
participant specific basis, using Chen et al. (2012)’s GNI 
method (i.e., global signal is not partialed from data with a 
GNI > 3). A note of caution should be considered when using 
this method. Specifically, if GNI correlates with variables of 
interest, it is possible that partialing global signal for only 
certain participants may lead to false associations (or mask 
true effects). Therefore, if this method is used, it is highly 
recommended that the user ascertain whether global 
partialing is related to variables of interest.   

GCOR: 
The user can choose to calculate a GCOR (Saad et al., 2013) 
value for each participant. This value can be used as a 
covariate in higher-level analyses to reduce bias. See Saad et 
al. for further details regarding the use of GCOR.  

White matter signal: 
-Default is to extract the signal from the entire white matter mask. 
However, Jo et al. (2013) suggest that extracting signal from local white 
matter (i.e., white matter within a 45mm sphere around the current voxel 
of interest) may help to reduce distance-dependent artifact induced by 
partialing of the global signal.  
-(2nd order) 1st derivative of signal 
-It is possible to remove the first five principal components rather than the 
mean signal. To do so, click the box labeled 'Use WM & Ventricular 
Principal Components'.  

Ventricular signal: 
-(2nd order) 1st derivative of signal. 
-It is possible to remove the first five principal components rather than the 
mean signal. To do so, click the box labeled 'Use WM & Ventricular 
Principal Components'. 

-Motion scrubbing via Power et al. (2014)'s method:  
 -The FD (frame displacement) cutoff (in mm) must be set. FD is the amount of 
 estimated movement from the previous volume to the current volume. Typical  



 values range from .5mm (liberal) to .2mm (conservative). You should pick a value 
 based on your sample (e.g., if you pick .2mm and this results in throwing out too  
 many participants, you may want to rethink your cutoff or the use of scrubbing in 
 general).  

-The DVARS cutoff (in standard deviation units) must be set. DVARS is roughly 
the change in mean signal from the previous volume to the current volume. The 
selection of threshold here has the same considerations as FD. 

 -NOTE: this procedure is likely incompatible with Patel et al. (2014)'s despiking, 
 so only one of these procedures can currently be used at a time.  
-ROI timeseries extraction method:  
 Options: 

-Mean across ROI voxels for each timepoint 
-Median of values of ROI voxels for each timepoint 
-Largest principal component of set of timeseries from voxels in the ROI 
 

 
Outputs: 
-.mat file containing a structure with processed timeseries for each ROI in the mask, 
along with numerous other variables used in processing 
-Logfile 
 
 
 
Stage 2 – Creation of Connectivity Matrices: 
This GUI accepts the Stage 1 output and creates connectivity matrices (one per 
participant/repeated condition). For task fMRI, deconvolution and division by condition 
are performed, with the option of detrending within block 
 
 
 
 
 
 
 
 
 
 
 
 
 
Inputs: 
Structure with Timeseries Data- 

-This should be a variable in the matlab workspace; enter the name of the 
variable in this field 
-This variable is obtained from the output of Stage 1 (load the .mat file into the 



workspace) 
 
Four measures of association can be used: 

-Pearson correlation 
-Partial correlation 

Thought to reflect direct effects to a greater degree. However, this is much 
less useful in datasets with a very large # of nodes (given the large 
percentage of variance removed).  

-Mutual information 
Uses the script available in the Functional Connectivity Toolbox 

-Robust (bendcorr) Correlation 
Uses the script available in Corr_toolbox_v2 

 
Outputs: 
-Output structure containing connectivity matrices for each participant 
-Logfile 
 
 
 
Stage 3 – Calculation of Graph Properties: 
This stage takes connectivity matrices as input (can, but does not have to be, the Stage 2 
output) and calculates graph theoretic properties for each participant/repeated level (to 
be used as dependent variables in Stage 4).  

 
This stage requires that entries in the connectivity matrices represent connectivity 
strength, but the measure of connectivity does not matter. In other words, entries could 
be Pearson correlations (e.g., output from Stage 2) or white matter tract strength (e.g., 
obtained from diffusion tractography). Therefore, entries do not have to conform to a 
specific scale. HOWEVER, some properties (e.g., local efficiency) will be calculated 
incorrectly if entries exceed 1 (or -1). Therefore, if your connectivity matrices contain 



entries greater than 1 (or < -1), you should rescale them, though ensuring to retain the 0 
point (i.e., do not z-score, which will change the 0 point). This can be done by dividing 
all entries (across participants) by the maximum absolute value in the data or the 
maximum possible value (e.g., if your measure of strength has a potential max of 2, you 
could divide by 2 instead of the max in your data, in order to preserve the actual 
potential range).  
This stage computes properties for fully-connected and/or (binarized or non-binarized) 
thresholded networks. For thresholded networks, the toolbox computes properties 
across a set of density thresholds. The user specifies a desired maximum density (a value 
of 0.5-0.6 is common) and the desired density step, and the toolbox computes the 
minimum density. When matrices are 'sparser,' it is possible that the specified 
maximum density cannot be reached. In this case, the toolbox will use the maximum 
possible density. Therefore, be sure to check the actual maximum density reached (i.e., 
out.max_dens_pos, out.max_dens_neg). This may occur, for example, for negative 
weights in resting data.  
The minimum density is chosen such that, at the very least, the presence of 
disconnected networks is not highly correlated with variables of interest (e.g., IVs in 
Stage 4). Therefore, this computation takes into account variables specified by the user 
and creates groups of participants by stratifying (e.g., high, medium, low) these 
variables. Mean networks are created for each (stratification) group, and the minimum 
density at which that network remains connected is identified. This is done for each 
group (across each variable, across all selected variables) and for the overall mean 
network. Then, the maximum of these minima is chosen as the overall minimum 
density. 
After each property is computed (for each threshold), a standardized area under the 
curve (AUC) is computed for each property, creating one value per property, per 
participant (or one value for each node/edge, for node/edge specific measures).  
For both fully connected and thresholded networks, properties will be automatically 
calculated for positive and negative weights separately (only positive, if absolute value is 
used). However, it is often the case that an appropriate minimum density cannot be 
found for negative weights in thresholded matrices, in which case these properties will 
not be computed.  
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Inputs: 
-Connectivity matrices: 

-1 matrix per repeated level, per participant 
-For p ROIs, n participants, and r repeated levels, this matrix should be p x p x n 
x r 



-NOTE: these matrices can have been created in any program and do not have to 
correspond to resting-state fMRI (e.g., can be diffusion fiber strength) 
-If repeated-measures tests are desired in Stage 4, the repeated measure should 
be indexed in the fourth dimension. For example, for 3 repeated levels, 10 
participants, and 30 ROIs, the dimensions of the input matrix should be 30 x 30 
x 10 x 3. In this stage (3), each level of the repeated factor will be treated 
independently. Note, Stage 4 uses polynomial contrasts, so arrange the levels of 
the repeated measure accordingly.  
-This should be a variable in the matlab workspace; enter the name of the 
variable in this field 
-If you used this toolbox to create these matrices, you should load the .mat output 
from Stage 2, then write ‘out.conmats’ (without quotation marks) in this field 

 
-Cell array containing a label for each ROI 

-This should be a variable in the matlab workspace; enter the name of the 
variable in this field 
-If you used this toolbox to create the connectivity matrices, you should load the 
.mat output from Stage 2, then write ‘out.ROI_labels’ (without quotation marks) 
in this field 

 
-Cell array containing participant identifiers (optional) 

-This should be a variable in the matlab workspace; enter the name of the 
variable in this field 
-If you used this toolbox to create the connectivity matrices, you should load the 
.mat output from Stage 2, then write ‘out.subs’ (without quotation marks) in this 
field 

 
-Variables used to calculate minimum density 
 -These should be variables in the matlab workspace 
 
-Covariates used for calculating minimum density 

-These should be variables in the matlab workspace 
 
 
Options: 
-AUC for Connected Networks: 

Because the procedure described above may still leave some disconnected 
matrices, the user has the option of also computing the AUC on ONLY connected 
matrices.  

-Partial Variables: 
-The stratified groups can be created using either the original variables or 
variables that have had the variance associated with the other specified variables 
(and any covariates) partialed out. 
-The reason to use partialed variables is because this is the variance that will 
actually be tested in the GLMs in Stage 4.  



-Calculate Properties for Absolute Value of Weights: 
-By default, properties will be calculated for positive and negative weights 
separately. However, the user can specify to calculate properties based on the 
absolute value of network weights, if only the strength of the relationship is of 
interest.  

-Number of Runs for Modularity: 
-Some properties require a modular structure, which is computed based on the 
overall mean network (using the Louvain algorithm and then the Fine-tuning 
algorithm, both from the Brain Connectivity Toolbox). Because modularity 
calculation is not deterministic (i.e., it depends on the initial start values), this 
computation is repeated and the organization that maximizes modularity is 
chosen. Therefore, this value specifies the number of repeated runs (this process 
is fairly quick, so a large value [5,000-10,000] is recommended).  

-Calculate Max Club Size: 
-Max club size for rich club networks can vary across matrices. Thus, this value 
can either be computed based on the data or prespecified here.  

-Properties for Fully Connected Matrices: 
-Specify which properties to compute 
-Click on each property of interest, holding down cntrl (or whatever works on 
your system) to specify multiple properties 
-All properties that you would like to test should end up highlighted 
-See the Appendix A for details regarding these properties 

-Properties for Thresholded Matrices: 
-Specify which properties to compute 
-Click on each property of interest, holding down cntrl (or whatever works on 
your system) to specify multiple properties 
-All properties that you would like to test should end up highlighted 
-See the Appendix A for details regarding these properties 

 
Output: 
-Output structure containing graph theoretic properties for each participant 

-Properties for fully-connected networks are contained in 
out_data.fullmat_graph_meas, and for thresholded networks in 
AUC_thrmat_graph_meas.  

-For thresholded matrices, for each property field there is a corresponding 
field with ‘_numvalsAUC’ appended that indicates the number of values 
used in computing that particular AUC. This will allow the user to 
determine whether this varies with variables of interest (which might 
introduce bias). 
-If the user specified that AUC should also be computed for only connected 
networks, the fields corresponding to these values have ‘_nodiscon’ 
appended.  

-The output structure contains other useful values including the modularity 
structure (mod_grps) and other values used in processing (serving as a logfile).  

 



Stage 4 – Running GLM with Permutation-Based Significance: 
This stage calculates GLMs with the graph properties computed in Stage 3 as DVs. The 
user selects IVs and contrasts/F-tests of these IVs (‘contrasts’ is used loosely here to 
include something like [0 0 1], which would test the significance of the third IV; i.e., 
contrasts do not have to sum to 0). Continuous & categorical between-participant 
predictors and a categorical within-participant predictor are accepted.  

 
Testing a single predictor or a contrast between predictors: 
First, define the design matrix and leave the 'Contrasts' drop-down menu on 'Contrasts'. 
Next, specify the desired # of contrasts in the box (then hit return or select somewhere 
else in the GUI). This will create a matrix in the bottom left with a column for each 
predictor and a row for each contrast. Enter the desired weights for each contrast in the 
appropriate rows.  
 
Testing a between-participant factor: 
If the factor has only two levels, it should be treated as a single predictor (see above). 
For more than two levels, first define the design matrix. The factor must be specified in 
the design matrix by q-1 dummy coded variables (q=#of levels), which can be created in 
MATLAB using dummyvar (Note: this will create q predictors, so only use the first q-1). 
Next, select 'F-tests' from the 'Contrasts' drop-down menu. Next, specify the desired # of 
F-tests in the box, and enter a 1 in the column associated with each of the dummy coded 
variables.  
 



Testing a within-participant factor: 
Currently, only a single repeated factor can be specified, with a maximum of eight levels. 
Additionally, only OLS can be used with repeated-measures. These limitations will be 
addressed in future releases. Note, the repeated factor must have been specified in Stage 
3 (indexed by the 4th dimension, see above). In Stage 4, the toolbox will recognize 
(based on the Stage 3 output) that there is a repeated measure (and the number of 
levels). Therefore, nothing different must be done in Stage 4 to test a repeated measure 
(i.e., specify the desired contrasts/F-tests as described above). Polynomial contrasts are 
used, and the output will contain (in order): 
1) F-test for the between effect (i.e., averaging across levels) 
2) F-test for each polynomial contrast (in ascending order, e.g., linear, quadratic, cubic) 
3) the omnibus test across (within) levels. The test statistic for the omnibus test will 
either be a Wilks' Lambda if a contrast is specified for between-participant predictors or 
an F-test if an F-test is specified for between-participant predictors.  
 
Significance is determined via non-parametric permutation tests using the method of 
Freedman & Lane (1983) (e.g., the same method used in FSL’s Randomise).  
 
Because several of the measures are node or edge specific, computation time is greatly 
increased if ‘Test ALL Nodes’ is specified. Testing all nodes/edges is also problematic in 
terms of multiple comparisons (i.e., you don’t have to look at all the tests, but it sure is 
tempting…..). Therefore, we strongly recommend examining only specific nodes/edges 
at this point. Nodes/edges can be selected based on a priori hypotheses. However, we 
also highly recommend using Zalesky, Fornito, & Bullmore (2012)’s NBS toolbox to 
identify specific nodes/edges that vary with IVs of interest.  
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Inputs: 
-Output structure from Stage 3 

-This should be a variable in the matlab workspace; enter the name of the 
variable in this field 
-This variable is obtained from the output of Stage 3 (load the .mat file into the 
workspace) 

-IVs of interest 
 -Only needed if all IVs of interest were not specified in Stage 3 

-These should be variables in the matlab workspace 
-Binary Node Selection Matrix 

-Only required if you wish to test only a subset of nodes for node-specific 
properties 
-Should be a binary p x 1 matrix with a 1 entered for nodes you wish to test, a 0 
otherwise 
-Instead of using this matrix to select nodes, you can do so by hand by pushing 



the ‘Select Nodes’ button 
-Binary Edge Selection Matrix 

-Only required if you wish to test only a subset of edges for edge-specific 
properties 
-Should be a binary p x p matrix with a 1 entered for edges you wish to test, a 0 
otherwise 
-Instead of using this matrix to select edges, you can do so by hand by pushing 
the ‘Select Edges’ button 

 Options: 
-Alpha 
 -Enter the alpha to use for significance 
-Number of Permutations 
 -Enter the number of permutations used to build the distribution 
-Type of GLM 
 -OLS = Ordinary Least Squares 

-Robust = Robust regression, which down-weights outliers in the dependent 
variable 
-LTS = Least Trimmed Squares, which effectively down-weights multivariate 
outliers 

-Use Previous Design Matrix 
 -Select ‘Yes’ if you already entered the variables you wish to model in Stage 3 

-Enter ‘No’ if you wish to use a different design matrix (then push the ‘Select New 
Predictors’ button to do so) 

-Contrasts/F-Tests 
 -Select either ‘Contrasts’ or ‘F-Tests’ 
-# of Contrasts/F-Tests 
 -Enter the number of contrasts/F-tests you wish to use 
-Contrast/F-Test Matrix 

-For each row (representing one contrast/F-test), enter a contrast weight in each 
column (entry can remain 0) 

-Test ALL Nodes 
 -Only applies to testing of node-specific properties 

-Check this box to test all nodes, otherwise enter a selection matrix or push the 
‘Select Nodes’ button 

-Test ALL Edges 
 -Only applies to testing of edge-specific properties 

-Check this box to test all edges, otherwise enter a selection matrix or push the 
‘Select Edges’ button 

-Properties for Fully Connected Matrices: 
-Specify which properties to test 
-Click on each property of interest, holding down cntrl (or whatever works on 
your system) to specify multiple properties 
-All properties that you would like to test should end up highlighted 
-See the Appendix A for details regarding these properties 

-Properties for Thresholded Matrices: 



-Specify which properties to test 
-Click on each property of interest, holding down cntrl (or whatever works on 
your system) to specify multiple properties 
-All properties that you would like to test should end up highlighted 
-See the Appendix A for details regarding these properties 

 
Outputs: 
Structure containing test statistics (t/F/Wilks' Lambda values, p-values) for each 
contrast/F-test, for each property selected 
Significant effects (at the chosen alpha) are summarized in an output file 
(<outname>_sig_analyses.txt) and out_data.sig_find	
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NOTE:	
  The	
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   in	
   this	
  appendix	
  has	
  been	
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   from	
  a	
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  of	
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Rubinov,	
  M.,	
  Sporns,	
  O.	
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  brain	
  connectivity:	
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  and	
  
interpretations.	
  NeuroImage,	
  52,	
  1059-­‐1069.	
  
	
  
Rubinov	
  M.,	
   Sporns	
   O.	
   (2011)	
  Weight-­‐conserving	
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   functional	
  
brain	
  networks.	
  NeuroImage,	
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  2068-­‐2079.	
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Types of Measures: 
Functional Segregation: 
The ability for specialized processing to occur within densely interconnected groups of 
brain regions. 
Measures: Clustering Coefficient, Local Efficiency, Transitivity.  
 
Functional Integration:  
The ability to rapidly combine specialized information from distributed brain regions.  
Measures: Characteristic Path Length, Global Efficiency.  
 
Centrality (Influence): 
The importance of a node (edge) for acting as hubs and facilitating integration.  
Measures: Degree, (Density for Influence), Diversity Coefficient, Edge Betweeness 
Centrality, Eigenvector Centrality, K-Coreness Centrality, Node Betweeness Centrality, 
Node Strength, Pagerank Centrality, Participation Coefficient, Subgraph Centrality, 
Within-Module Degree Z-Score.  
 
Resilience: 
Network vulnerability to insult.  
Measures: Assortativity.  



 
Measures: 
Assortativity‡:  
The correlation between degrees of all nodes on two opposite ends of a link. A measure 
of resilience. Positive values reflect greater resilience.  
One value is produced for the entire network.  
 
Characteristic Path Length (CPL):  
The average shortest path between all pairs of nodes. More influenced by shorter paths. 
A measure of functional integration. Higher values reflect less integration.  
One value is produced for the entire network.  
 
Clustering Coefficient:  
The fraction of triangles around a node (the mean across the network is also computed). 
A measure of functional segregation. Higher values reflect more clustered connectivity.  
Two outputs, one has one value per node, one describes entire network.  
 
Degree:  
The number of neighbors (edges) of a node. A measure of centrality. Reflects the 
general importance of a node. Higher values reflect greater importance.  
Computed only for thresholded networks.  
One value is produced for each node.  
 
Density:  
Fraction of present connections to possible connections. Similar to the mean degree of 
all nodes in the network. A measure of influence (centrality on a network scale). Reflects 
the total “wiring cost” of network. Higher values reflect more interconnected networks.  
Computed only for thresholded networks. 
One value is produced for the entire network.  
 
Diversity Coefficient:  
Measures the diversity of intermodular connections (the variance of the weights of edges 
connected to a node). A measure of centrality. Higher values reflect greater diversity.  
Computed only for fully connected networks. 
One value is produced per node.  
 
Edge Betweeness Centrality†:  
The fraction of all the shortest paths in a network that pass through a given edge. A 
measure of centrality. Higher values suggest that an edge is more important for 
controlling information flow.  
One value is produced for each edge. 
 
Eigenvector Centrality: 
The corresponding element of the eigenvector with the largest eigenvalue. A measure of 
centrality. Higher values suggest that a node is connected to other nodes with high 
eigenvector centrality. Is more reflective of the global (vs. local) prominence of a node. 
One value is produced for each node. 



 
Global Efficiency:  
The average inverse shortest path between all pairs of nodes. More influenced by longer 
paths. A measure of functional integration. Higher values reflect greater integration.  
One value is produced for the entire network.  
 
K-Coreness Centrality: 
A k-core if the largest subgraph comprising nodes of at least k degree, and the k-
coreness of a node is k if the node belongs to the k-core but not the (k+1)-core. A 
measure of centrality. Higher values reflect greater connectivity to more connected 
nodes/membership in a relatively more influential network.  
Computed only for thresholded networks.  
One value is produced for each node 
 
Local Efficiency:  
The average inverse shortest path for neighbors of a node (the mean across the network 
is also computed). Reflects the efficiency of communication among neighbors when a 
node is removed. A measure of functional segregation. Higher values reflect greater 
communication.  
Two outputs, one has one value per node, one describes entire network.   
 
Matching Index†:  
A measure of the similarity between two nodes' connectivity profiles. Higher values 
reflect greater similarity.  
One value is produced for each pair of nodes. 
 
Node Betweeness Centrality:  
The fraction of all the shortest paths in a network that pass through a node. A measure 
of centrality. Higher values suggest that a node is more important for controlling 
information flow.  
One value is produced for each node.  
 
Node Strength:  
The sum of the weights connected to a node (the sum across the network is also 
computed). A measure of centrality. Higher and lower values reflect greater centrality of 
a node for positive and negative edges, respectively.  
Computed only for fully connected networks. 
Two outputs, one has one value per node, one describes entire network.  
 
Pagerank Centrality: 
Similar to eigenvector centrality. A measure of centrality. Higher values suggest greater 
centrality. Is more reflective of the global (vs. local) prominence of a node.  
One value is produced for each node. 
 
Participation Coefficient:  
The extent to which a node is connected with nodes outside its module. A measure of 
centrality. Higher values reflect more between module connectivity. Nodes with a high 



within module degree z-score but a low participation coefficient are known as provincial 
hubs and play an important part in facilitating modular segregation. Nodes with both a 
high within module degree z-score and a high participation coefficient are known as 
connector hubs and facilitate intermodular communication. 
One value is produced for each node. 
 
Rich Club Networks‡:  
Reflects the degree to which network hubs tend to be more densely connected among 
themselves than nodes of a lower degree.  
One value is produced for each degree size (up to the maximum degree).  
 
 
Small Worldness: 
The ratio of clustering coefficient to path length (each normalized by random networks).  
Higher values reflect more small worldness, and networks high in small worldness have 
both high integration and segregation.  
Computed only for thresholded networks. 
One value is produced for the entire network. 
 
Subgraph Centrality:  
A weighted sum of the closed walks of different lengths in the network starting and 
ending at the node. Reflects the extent to which a node participates in subgraphs. A 
measure of centrality. Higher values reflect greater centrality. 
Computed only for thresholded networks. 
One value is produced for each node.  
 
Transitivity:  
The (normalized) mean clustering coefficient. A measure of functional segregation. 
Higher values reflect more clustered connectivity. 
One value is produced for the entire network.  
 
Within-Module Degree Z-Score:  
The extent to which a node is connected to other nodes in its module. A measure of 
centrality. Higher values reflect more within module connectivity. Nodes with a high 
within module degree z-score but a low participation coefficient are known as provincial 
hubs and play an important part in facilitating modular segregation. Nodes with both a 
high within module degree z-score and a low participation coefficient are known as 
connector hubs and facilitate intermodular communication.  
One value is produced for each node.   
 
‡Calculating this measure depends on the presence of (at least some) zeros; thus, it  
cannot be calculated when there is non-zero value for all entries of the connectivity 
matrix; therefore, calculation of this property is automatically turned off when using the 
absolute value of weights for fully connected matrices 
 
†Because a value is produced for each edge, the number of values produced can be quite 
large and computing/testing can be time consuming. 


