|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectno.uib.cipr.matrix.AbstractMatrix
no.uib.cipr.matrix.DenseMatrix
public class DenseMatrix
Dense matrix. It is a good all-round matrix structure, with fast access and efficient algebraic operations. The matrix
| a11 | a12 | a13 | a14 |
| a21 | a22 | a23 | a24 |
| a31 | a32 | a33 | a34 |
| a41 | a42 | a43 | a44 |
is stored column major in a single array, as follows:
| a11 | a21 | a31 | a41 | a12 | a22 | a32 | a42 | a13 | a23 | a33 | a43 | a14 | a24 | a34 | a44 |
| Nested Class Summary |
|---|
| Nested classes/interfaces inherited from interface no.uib.cipr.matrix.Matrix |
|---|
Matrix.Norm |
| Field Summary |
|---|
| Fields inherited from class no.uib.cipr.matrix.AbstractMatrix |
|---|
numColumns, numRows |
| Constructor Summary | |
|---|---|
DenseMatrix(double[][] values)
Constructor for DenseMatrix. |
|
DenseMatrix(int numRows,
int numColumns)
Constructor for DenseMatrix |
|
DenseMatrix(Matrix A)
Constructor for DenseMatrix |
|
DenseMatrix(Matrix A,
boolean deep)
Constructor for DenseMatrix |
|
DenseMatrix(MatrixVectorReader r)
Constructor for DenseMatrix |
|
DenseMatrix(Vector x)
Constructor for DenseMatrix. |
|
DenseMatrix(Vector[] x)
Constructor for DenseMatrix. |
|
DenseMatrix(Vector x,
boolean deep)
Constructor for DenseMatrix. |
|
| Method Summary | |
|---|---|
void |
add(int row,
int column,
double value)
A(row,column) += value |
DenseMatrix |
copy()
Creates a deep copy of the matrix |
double |
get(int row,
int column)
Returns A(row,column) |
double[] |
getData()
Returns the matrix contents. |
Matrix |
multAdd(double alpha,
Matrix B,
Matrix C)
C = alpha*A*B + C |
Vector |
multAdd(double alpha,
Vector x,
Vector y)
y = alpha*A*x + y |
Matrix |
rank1(double alpha,
Vector x,
Vector y)
A = alpha*x*yT + A. |
void |
set(int row,
int column,
double value)
A(row,column) = value |
Matrix |
set(Matrix B)
A=B. |
Matrix |
solve(Matrix B,
Matrix X)
X = A\B. |
Vector |
solve(Vector b,
Vector x)
x = A\b. |
Matrix |
transABmultAdd(double alpha,
Matrix B,
Matrix C)
C = alpha*AT*BT + C |
Matrix |
transAmultAdd(double alpha,
Matrix B,
Matrix C)
C = alpha*AT*B + C |
Matrix |
transBmultAdd(double alpha,
Matrix B,
Matrix C)
C = alpha*A*BT + C |
Vector |
transMultAdd(double alpha,
Vector x,
Vector y)
y = alpha*AT*x + y |
Matrix |
transSolve(Matrix B,
Matrix X)
X = AT\B. |
Vector |
transSolve(Vector b,
Vector x)
x = AT\b. |
Matrix |
zero()
Zeros all the entries in the matrix, while preserving any underlying structure. |
| Methods inherited from class no.uib.cipr.matrix.AbstractMatrix |
|---|
add, add, check, checkMultAdd, checkMultAdd, checkRank1, checkRank1, checkRank2, checkRank2, checkSize, checkSolve, checkSolve, checkTransABmultAdd, checkTransAmultAdd, checkTransBmultAdd, checkTransMultAdd, checkTranspose, checkTranspose, checkTransRank1, checkTransRank2, isSquare, iterator, max, max, mult, mult, mult, mult, multAdd, multAdd, norm, norm1, normF, normInf, numColumns, numRows, rank1, rank1, rank1, rank1, rank1, rank2, rank2, rank2, rank2, scale, set, toString, transABmult, transABmult, transABmultAdd, transAmult, transAmult, transAmultAdd, transBmult, transBmult, transBmultAdd, transMult, transMult, transMultAdd, transpose, transpose, transRank1, transRank1, transRank2, transRank2 |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Constructor Detail |
|---|
public DenseMatrix(MatrixVectorReader r)
throws java.io.IOException
r - Reader to get the matrix from
java.io.IOException
public DenseMatrix(int numRows,
int numColumns)
numRows - Number of rowsnumColumns - Number of columnspublic DenseMatrix(Matrix A)
A - Matrix to copy. A deep copy is made
public DenseMatrix(Matrix A,
boolean deep)
A - Matrix to copy contents fromdeep - If true, A is copied, else a shallow copy is
made and the matrices share underlying storage. For this,
A must be a dense matrix
public DenseMatrix(Vector x,
boolean deep)
x - Vector to copy from. This will form this matrix' single columndeep - If true, x is copied, if false, the internal storage of this
matrix is the same as that of the vector. In that case,
x must be a DenseVectorpublic DenseMatrix(Vector x)
x - The vector which forms this matrix' single column. It is
copied, not referencedpublic DenseMatrix(Vector[] x)
x - Vectors which forms the columns of this matrix. Every vector
must have the same sizepublic DenseMatrix(double[][] values)
values - Arrays to copy from. Every sub-array must have the same size| Method Detail |
|---|
public DenseMatrix copy()
Matrix
copy in interface Matrixcopy in class AbstractMatrix
public Matrix multAdd(double alpha,
Matrix B,
Matrix C)
MatrixC = alpha*A*B + C
multAdd in interface MatrixmultAdd in class AbstractMatrixB - Matrix such that B.numRows() == A.numColumns()
and B.numColumns() == C.numColumns()C - Matrix such that C.numRows() == A.numRows() and
B.numColumns() == C.numColumns()
public Matrix transAmultAdd(double alpha,
Matrix B,
Matrix C)
MatrixC = alpha*AT*B + C
transAmultAdd in interface MatrixtransAmultAdd in class AbstractMatrixB - Matrix such that B.numRows() == A.numRows() and
B.numColumns() == C.numColumns()C - Matrix such that C.numRows() == A.numColumns()
and B.numColumns() == C.numColumns()
public Matrix transBmultAdd(double alpha,
Matrix B,
Matrix C)
MatrixC = alpha*A*BT + C
transBmultAdd in interface MatrixtransBmultAdd in class AbstractMatrixB - Matrix such that B.numRows() == A.numRows() and
B.numColumns() == C.numColumns()C - Matrix such that C.numRows() == A.numColumns()
and B.numColumns() == C.numColumns()
public Matrix transABmultAdd(double alpha,
Matrix B,
Matrix C)
MatrixC = alpha*AT*BT + C
transABmultAdd in interface MatrixtransABmultAdd in class AbstractMatrixB - Matrix such that B.numColumns() == A.numRows()
and B.numRows() == C.numColumns()C - Matrix such that C.numRows() == A.numColumns()
and B.numRows() == C.numColumns()
public Matrix rank1(double alpha,
Vector x,
Vector y)
MatrixA = alpha*x*yT + A. The matrix must be
square, and the vectors of the same length
rank1 in interface Matrixrank1 in class AbstractMatrix
public Vector multAdd(double alpha,
Vector x,
Vector y)
Matrixy = alpha*A*x + y
multAdd in interface MatrixmultAdd in class AbstractMatrixx - Vector of size A.numColumns()y - Vector of size A.numRows()
public Vector transMultAdd(double alpha,
Vector x,
Vector y)
Matrixy = alpha*AT*x + y
transMultAdd in interface MatrixtransMultAdd in class AbstractMatrixx - Vector of size A.numRows()y - Vector of size A.numColumns()
public Matrix solve(Matrix B,
Matrix X)
MatrixX = A\B. Not all matrices support this operation, those
that do not throw UnsupportedOperationException. Note
that it is often more efficient to use a matrix decomposition and its
associated solver
solve in interface Matrixsolve in class AbstractMatrixB - Matrix with the same number of rows as A, and
the same number of columns as XX - Matrix with a number of rows equal A.numColumns(),
and the same number of columns as B
public Vector solve(Vector b,
Vector x)
Matrixx = A\b. Not all matrices support this operation, those
that do not throw UnsupportedOperationException. Note
that it is often more efficient to use a matrix decomposition and its
associated solver
solve in interface Matrixsolve in class AbstractMatrixb - Vector of size A.numRows()x - Vector of size A.numColumns()
public Matrix transSolve(Matrix B,
Matrix X)
MatrixX = AT\B. Not all matrices support this
operation, those that do not throw
UnsupportedOperationException. Note that it is often more
efficient to use a matrix decomposition and its associated transpose
solver
transSolve in interface MatrixtransSolve in class AbstractMatrixB - Matrix with a number of rows equal A.numColumns(),
and the same number of columns as XX - Matrix with the same number of rows as A, and
the same number of columns as B
public Vector transSolve(Vector b,
Vector x)
Matrixx = AT\b. Not all matrices support this
operation, those that do not throw
UnsupportedOperationException. Note that it is often more
efficient to use a matrix decomposition and its associated solver
transSolve in interface MatrixtransSolve in class AbstractMatrixb - Vector of size A.numColumns()x - Vector of size A.numRows()
public double[] getData()
public void add(int row,
int column,
double value)
MatrixA(row,column) += value
add in interface Matrixadd in class AbstractMatrix
public void set(int row,
int column,
double value)
MatrixA(row,column) = value
set in interface Matrixset in class AbstractMatrix
public double get(int row,
int column)
MatrixA(row,column)
get in interface Matrixget in class AbstractMatrixpublic Matrix set(Matrix B)
MatrixA=B. The matrices must be of the same size
set in interface Matrixset in class AbstractMatrixpublic Matrix zero()
Matrix
zero in interface Matrixzero in class AbstractMatrix
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||