|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectno.uib.cipr.matrix.AbstractMatrix
no.uib.cipr.matrix.UpperSymmPackMatrix
no.uib.cipr.matrix.UpperSPDPackMatrix
public class UpperSPDPackMatrix
Upper symmetrical positive definite packed matrix. Same layout as
UpperSymmPackMatrix. This
class does not enforce the SPD property, but serves as a tag so that more
efficient algorithms can be used in the solvers.
| Nested Class Summary |
|---|
| Nested classes/interfaces inherited from interface no.uib.cipr.matrix.Matrix |
|---|
Matrix.Norm |
| Field Summary |
|---|
| Fields inherited from class no.uib.cipr.matrix.AbstractMatrix |
|---|
numColumns, numRows |
| Constructor Summary | |
|---|---|
UpperSPDPackMatrix(int n)
Constructor for UpperSPDPackMatrix |
|
UpperSPDPackMatrix(Matrix A)
Constructor for UpperSPDPackMatrix |
|
UpperSPDPackMatrix(Matrix A,
boolean deep)
Constructor for UpperSPDPackMatrix |
|
| Method Summary | |
|---|---|
UpperSPDPackMatrix |
copy()
Creates a deep copy of the matrix |
double[] |
getData()
Returns the matrix contents. |
Vector |
multAdd(double alpha,
Vector x,
Vector y)
y = alpha*A*x + y |
Matrix |
rank1(double alpha,
Vector x,
Vector y)
A = alpha*x*yT + A. |
Matrix |
rank2(double alpha,
Vector x,
Vector y)
A = alpha*x*yT + alpha*y*xT + A. |
Matrix |
set(Matrix B)
A=B. |
Matrix |
solve(Matrix B,
Matrix X)
X = A\B. |
Vector |
solve(Vector b,
Vector x)
x = A\b. |
Vector |
transMultAdd(double alpha,
Vector x,
Vector y)
y = alpha*AT*x + y |
Matrix |
transpose()
Transposes the matrix in-place. |
Matrix |
transSolve(Matrix B,
Matrix X)
X = AT\B. |
Vector |
transSolve(Vector b,
Vector x)
x = AT\b. |
Matrix |
zero()
Zeros all the entries in the matrix, while preserving any underlying structure. |
| Methods inherited from class no.uib.cipr.matrix.UpperSymmPackMatrix |
|---|
add, get, set |
| Methods inherited from class no.uib.cipr.matrix.AbstractMatrix |
|---|
add, add, check, checkMultAdd, checkMultAdd, checkRank1, checkRank1, checkRank2, checkRank2, checkSize, checkSolve, checkSolve, checkTransABmultAdd, checkTransAmultAdd, checkTransBmultAdd, checkTransMultAdd, checkTranspose, checkTranspose, checkTransRank1, checkTransRank2, isSquare, iterator, max, max, mult, mult, mult, mult, multAdd, multAdd, multAdd, norm, norm1, normF, normInf, numColumns, numRows, rank1, rank1, rank1, rank1, rank1, rank2, rank2, rank2, scale, set, toString, transABmult, transABmult, transABmultAdd, transABmultAdd, transAmult, transAmult, transAmultAdd, transAmultAdd, transBmult, transBmult, transBmultAdd, transBmultAdd, transMult, transMult, transMultAdd, transpose, transRank1, transRank1, transRank2, transRank2 |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Constructor Detail |
|---|
public UpperSPDPackMatrix(int n)
n - Size of the matrix. Since the matrix must be square, this
equals both the number of rows and columnspublic UpperSPDPackMatrix(Matrix A)
A - Matrix to copy contents from. Only the entries of the relevant
part are copied
public UpperSPDPackMatrix(Matrix A,
boolean deep)
A - Matrix to copy contents from. Only the entries of the relevant
part are copieddeep - True if the copy is deep, else false (giving a shallow copy).
For shallow copies, A must be a packed matrix| Method Detail |
|---|
public UpperSPDPackMatrix copy()
Matrix
copy in interface Matrixcopy in class UpperSymmPackMatrix
public Matrix solve(Matrix B,
Matrix X)
MatrixX = A\B. Not all matrices support this operation, those
that do not throw UnsupportedOperationException. Note
that it is often more efficient to use a matrix decomposition and its
associated solver
solve in interface MatrixB - Matrix with the same number of rows as A, and
the same number of columns as XX - Matrix with a number of rows equal A.numColumns(),
and the same number of columns as B
public Vector multAdd(double alpha,
Vector x,
Vector y)
Matrixy = alpha*A*x + y
multAdd in interface MatrixmultAdd in class AbstractMatrixx - Vector of size A.numColumns()y - Vector of size A.numRows()
public Vector transMultAdd(double alpha,
Vector x,
Vector y)
Matrixy = alpha*AT*x + y
transMultAdd in interface MatrixtransMultAdd in class AbstractMatrixx - Vector of size A.numRows()y - Vector of size A.numColumns()
public Matrix rank1(double alpha,
Vector x,
Vector y)
MatrixA = alpha*x*yT + A. The matrix must be
square, and the vectors of the same length
rank1 in interface Matrixrank1 in class AbstractMatrix
public Matrix rank2(double alpha,
Vector x,
Vector y)
MatrixA = alpha*x*yT + alpha*y*xT + A.
The matrix must be square, and the vectors of the same length
rank2 in interface Matrixrank2 in class AbstractMatrix
public Vector solve(Vector b,
Vector x)
Matrixx = A\b. Not all matrices support this operation, those
that do not throw UnsupportedOperationException. Note
that it is often more efficient to use a matrix decomposition and its
associated solver
solve in interface Matrixsolve in class AbstractMatrixb - Vector of size A.numRows()x - Vector of size A.numColumns()
public Matrix transSolve(Matrix B,
Matrix X)
MatrixX = AT\B. Not all matrices support this
operation, those that do not throw
UnsupportedOperationException. Note that it is often more
efficient to use a matrix decomposition and its associated transpose
solver
transSolve in interface MatrixtransSolve in class AbstractMatrixB - Matrix with a number of rows equal A.numColumns(),
and the same number of columns as XX - Matrix with the same number of rows as A, and
the same number of columns as B
public Vector transSolve(Vector b,
Vector x)
Matrixx = AT\b. Not all matrices support this
operation, those that do not throw
UnsupportedOperationException. Note that it is often more
efficient to use a matrix decomposition and its associated solver
transSolve in interface MatrixtransSolve in class AbstractMatrixb - Vector of size A.numColumns()x - Vector of size A.numRows()
public Matrix transpose()
Matrix
transpose in interface Matrixtranspose in class AbstractMatrixpublic double[] getData()
public Matrix set(Matrix B)
MatrixA=B. The matrices must be of the same size
set in interface Matrixset in class AbstractMatrixpublic Matrix zero()
Matrix
zero in interface Matrixzero in class AbstractMatrix
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||