Posted By: NITRC ADMIN - Jul 24, 2015
Tool/Resource: Journals
 
Related Articles

Cerebellar fMRI Activation Increases with Increasing Working Memory Demands.

Cerebellum. 2015 Jul 23;

Authors: Küper M, Kaschani P, Thürling M, Stefanescu MR, Burciu RG, Göricke S, Maderwald S, Ladd ME, Hautzel H, Timmann D

Abstract
The aim of the present study was to explore cerebellar contributions to the central executive in n-back working memory tasks using 7-T functional magnetic imaging (fMRI). We hypothesized that cerebellar activation increased with increasing working memory demands. Activations of the cerebellar cortex and dentate nuclei were compared between 0-back (serving as a motor control task), 1-back, and 2-back working memory tasks for both verbal and abstract modalities. A block design was used. Data of 27 participants (mean age 26.6 ± 3.8 years, female/male 12:15) were included in group statistical analysis. We observed that cerebellar cortical activations increased with higher central executive demands in n-back tasks independent of task modality. As confirmed by subtraction analyses, additional bilateral activations following higher executive demands were found primarily in four distinct cerebellar areas: (i) the border region of lobule VI and crus I, (ii) inferior parts of the lateral cerebellum (lobules crus II, VIIb, VIII, IX), (iii) posterior parts of the paravermal cerebellar cortex (lobules VI, crus I, crus II), and (iv) the inferior vermis (lobules VI, VIIb, VIII, IX). Dentate activations were observed for both verbal and abstract modalities. Task-related increases were less robust and detected for the verbal n-back tasks only. These results provide further evidence that the cerebellum participates in an amodal bilateral neuronal network representing the central executive during working memory n-back tasks.

PMID: 26202670 [PubMed - as supplied by publisher]



Link to Original Article
RSS Feed Monitor in Slack
Latest News

This news item currently has no comments.