Posted By: NITRC ADMIN - Jul 13, 2017
Tool/Resource: Journals
 

Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression.

PLoS One. 2017;12(7):e0179638

Authors: Yoshida K, Shimizu Y, Yoshimoto J, Takamura M, Okada G, Okamoto Y, Yamawaki S, Doya K

Abstract
In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS) regression to resting-state functional magnetic resonance imaging (rs-fMRI) data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area.

PMID: 28700672 [PubMed - in process]



Link to Original Article
RSS Feed Monitor in Slack
Latest News

This news item currently has no comments.